Tag Archives: nanometer

Berkeley Lab Researchers Create Nanoparticle Thin Films That Self-Assemble in One Minute

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Ting Xu, a polymer scientist with Berkeley Lab’s Materials Sciences Division, led a study in which supramolecules based on block copolymers were combined with gold nanoparticles to create nanocomposites that under solvent annealing quickly self-assembled into hierarchically-structured thin films spanning an area of several square centimeters. The technique is compatible with current nanomanufacturing processes and has the potential to generate new families of optical coatings for applications in a wide number of areas including solar energy, nanoelectronics and computer memory storage. This technique could even open new avenues to the fabrication of metamaterials, artificial nanoconstructs that possess remarkable optical properties. (more…)

Read More

Researchers Create ‘Nanoflowers’ for Energy Storage, Solar Cells

Researchers from North Carolina State University have created flower-like structures out of germanium sulfide (GeS) – a semiconductor material – that have extremely thin petals with an enormous surface area. The GeS flower holds promise for next-generation energy storage devices and solar cells.

“Creating these GeS nanoflowers is exciting because it gives us a huge surface area in a small amount of space,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper on the research. “This could significantly increase the capacity of lithium-ion batteries, for instance, since the thinner structure with larger surface area can hold more lithium ions. By the same token, this GeS flower structure could lead to increased capacity for supercapacitors, which are also used for energy storage.” (more…)

Read More

Graphene Membranes May Lead To Enhanced Natural Gas Production, Less CO2 Pollution, Says CU Study

Engineering faculty and students at the University of Colorado Boulder have produced the first experimental results showing that atomically thin graphene membranes with tiny pores can effectively and efficiently separate gas molecules through size-selective sieving.

The findings are a significant step toward the realization of more energy-efficient membranes for natural gas production and for reducing carbon dioxide emissions from power plant exhaust pipes.

Mechanical engineering professors Scott Bunch and John Pellegrino co-authored a paper in Nature Nanotechnology with graduate students Steven Koenig and Luda Wang detailing the experiments. The paper was published Oct. 7 in the journal’s online edition. (more…)

Read More

Questions for Rashid Zia: Brown to Lead Multi-University Quantum Metamaterials Research

Through a new Multidisciplinary University Research Initiative (MURI) awarded by the Air Force Office of Scientific Research, Brown will lead an effort to study new optical materials and their interactions with light at the quantum scale. The initiative, which includes six other top universities, will receive $4.5 million over three years, with a possible two-year extension.

Harnessing the power of light at the quantum scale could clear the way for superfast optical microprocessors, high-capacity optical memory, securely encrypted communication, and untold other technologies. But before any of these potential applications sees the light of day, substantial obstacles must be overcome — not the least of which is the fact that the wavelength of light is larger than quantum-scale objects, limiting the range of possible light-matter interactions. (more…)

Read More

Nano-Sandwich Technique Slims Down Solar Cells, Improves Efficiency

Researchers from North Carolina State University have found a way to create much slimmer thin-film solar cells without sacrificing the cells’ ability to absorb solar energy. Making the cells thinner should significantly decrease manufacturing costs for the technology.

“We were able to create solar cells using a ‘nanoscale sandwich’ design with an ultra-thin ‘active’ layer,” says Dr. Linyou Cao, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the research. “For example, we created a solar cell with an active layer of amorphous silicon that is only 70 nanometers (nm) thick. This is a significant improvement, because typical thin-film solar cells currently on the market that also use amorphous silicon have active layers between 300 and 500 nm thick.” The “active” layer in thin-film solar cells is the layer of material that actually absorbs solar energy for conversion into electricity or chemical fuel. (more…)

Read More

Golden Potential for Gold Thin Films

Berkeley Lab Researchers Direct the Self-Assembly of Gold Nanoparticles into Device-Ready Thin films

Scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have directed the first self-assembly of nanoparticles into device-ready materials. Through a relatively easy and inexpensive technique based on blending nanoparticles with block co-polymer supramolecules, the researchers produced multiple-layers of thin films from highly ordered one-, two- and three-dimensional arrays of gold nanoparticles. Thin films such as these have potential applications for a wide range of fields, including computer memory storage, energy harvesting, energy storage, remote-sensing, catalysis, light management and the emerging new field of plasmonics.

“We’ve demonstrated a simple yet versatile supramolecular approach to control the 3-D spatial organization of nanoparticles with single particle precision over macroscopic distances in thin films,” says polymer scientist Ting Xu, who led this research. “While the thin gold films we made were wafer-sized, the technique can easily produce much larger films, and it can be used on nanoparticles of many other materials besides gold.” (more…)

Read More

Better Organic Electronics

*Berkeley Lab Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices*

Future prospects for superior new organic electronic devices are brighter now thanks to a new study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Working at the Lab’s Molecular Foundry, a DOE nanoscience center, the team has provided the first experimental determination of the pathways by which electrical charge is transported from molecule-to-molecule in an organic thin film. Their results also show how such organic films can be chemically modified to improve conductance.

“We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance,” says Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab’s Materials Sciences Division and who led this study. “Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices.” (more…)

Read More

Made in IBM Labs: Holey Optochip First to Transfer One Trillion Bits of Information per Second Using the Power of Light

• Researchers invent novel technique by fabricating tiny holes in a single quarter-inch chip to boost data transfer rates
• Until now, it was not possible to transport terabits of data for existing parallel optical communications technology
• New prototype compactly and efficiently delivers ultra-high interconnect bandwidth to power future supercomputer and data center applications

LOS ANGELES – 08 Mar 2012: IBM scientists today will report on a prototype optical chipset, dubbed “Holey Optochip”, that is the first parallel optical transceiver to transfer one trillion bits – one terabit – of information per second, the equivalent of downloading 500 high definition movies. The report will be presented at the Optical Fiber Communication Conference taking place in Los Angeles.

With the ability to move information at blazing speeds – eight times faster than parallel optical components available today – the breakthrough could transform how data is accessed, shared and used for a new era of communications, computing and entertainment. The raw speed of one transceiver is equivalent to the bandwidth consumed by 100,000 users at today’s typical 10 Mb/s high-speed internet access. Or, it would take just around an hour to transfer the entire U.S. Library of Congress web archive through the transceiver. (more…)

Read More