Tag Archives: nanometer

New Technique Lets Scientists Peer Within Nanoparticles, See Atomic Structure in 3-D

UCLA researchers are now able to peer deep within the world’s tiniest structures to create three-dimensional images of individual atoms and their positions. Their research, published March 22 in the journal Nature, presents a new method for directly measuring the atomic structure of nanomaterials.

“This is the first experiment where we can directly see local structures in three dimensions at atomic-scale resolution — that’s never been done before,” said Jianwei (John) Miao, a professor of physics and astronomy and a researcher with the California NanoSystems Institute (CNSI) at UCLA. (more…)

Read More

Better Organic Electronics

*Berkeley Lab Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices*

Future prospects for superior new organic electronic devices are brighter now thanks to a new study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Working at the Lab’s Molecular Foundry, a DOE nanoscience center, the team has provided the first experimental determination of the pathways by which electrical charge is transported from molecule-to-molecule in an organic thin film. Their results also show how such organic films can be chemically modified to improve conductance.

“We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance,” says Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab’s Materials Sciences Division and who led this study. “Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices.” (more…)

Read More

Made in IBM Labs: Holey Optochip First to Transfer One Trillion Bits of Information per Second Using the Power of Light

• Researchers invent novel technique by fabricating tiny holes in a single quarter-inch chip to boost data transfer rates
• Until now, it was not possible to transport terabits of data for existing parallel optical communications technology
• New prototype compactly and efficiently delivers ultra-high interconnect bandwidth to power future supercomputer and data center applications

LOS ANGELES – 08 Mar 2012: IBM scientists today will report on a prototype optical chipset, dubbed “Holey Optochip”, that is the first parallel optical transceiver to transfer one trillion bits – one terabit – of information per second, the equivalent of downloading 500 high definition movies. The report will be presented at the Optical Fiber Communication Conference taking place in Los Angeles.

With the ability to move information at blazing speeds – eight times faster than parallel optical components available today – the breakthrough could transform how data is accessed, shared and used for a new era of communications, computing and entertainment. The raw speed of one transceiver is equivalent to the bandwidth consumed by 100,000 users at today’s typical 10 Mb/s high-speed internet access. Or, it would take just around an hour to transfer the entire U.S. Library of Congress web archive through the transceiver. (more…)

Read More

Building A Better Trap

Fieldwork in Peru’s Andes Mountains is demanding, especially when it involves hauling heavy equipment to remote sites that are accessible only by traversing the region’s rugged terrain.

But the task of collecting insects for the study of vector-borne diseases and other purposes has become a little less onerous since a Yale School of Public Health researcher and colleagues designed a lighter — and perhaps better — trap. (more…)

Read More

UCLA Physicists Report Nanotechnology Feat With Proteins

UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid.

“Proteins are the molecular machines of life, the molecules we are made of,” Zocchi said. “We have found that sometimes they behave as a solid and sometimes as a liquid. (more…)

Read More

Researchers Do Precise Gene Therapy Without A Needle

COLUMBUS, Ohio – For the first time, researchers have found a way to inject a precise dose of a gene therapy agent directly into a single living cell without a needle.

The technique uses electricity to “shoot” bits of therapeutic biomolecules through a tiny channel and into a cell in a fraction of a second.

L. James Lee and his colleagues at Ohio State University describe the technique in the online edition of the journal Nature Nanotechnology, where they report successfully inserting specific doses of an anti-cancer gene into individual leukemia cells to kill them. (more…)

Read More

Nanotechnology – the ultimate quantum level??

One nanometer equals one billionth or 10-9 of a meter. A very tiny unit of length. Nanotechnology is a multidisciplinary field of applied sciences where scientists are trying to understand matter on atomic or molecular scale, a very fine level. Most probably the ultimate quantum level. The aim is to develop devices within that tiny […]

Read More