Life as we know it has certain properties that are consistent regardless whether you’re looking at a bacterial colony in a petri dish or a primate colony in South America. Rick Michod, UA professor and department head of ecology and evolutionary biology, has received $1.3 million from NASA to investigate what properties of biology define an individual organism.
Many things in life are not fair. But some things are at least consistent.
For example, all life as we know it has certain universal properties, which presumably define how life would be organized anywhere it evolved in the universe, said Richard Michod, professor and head of the department of ecology and evolutionary biology at the University of Arizona. (more…)
Berkeley Lab Researchers Produce First Step-by-Step Look at Transcription Initiation
Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have achieved a major advance in understanding how genetic information is transcribed from DNA to RNA by providing the first step-by-step look at the biomolecular machinery that reads the human genome.
“We’ve provided a series of snapshots that shows how the genome is read one gene at a time,” says biophysicist Eva Nogales who led this research. “For the genetic code to be transcribed into messenger RNA, the DNA double helix has to be opened and the strand of gene sequences has to be properly positioned so that RNA polymerase, the enzyme that catalyzes transcription, knows where the gene starts. The electron microscopy images we produced show how this is done.” (more…)
UCLA researchers discover new point of attack for drug therapy
Alzheimer’s disease is the most common cause of late-life dementia. The disorder is thought to be caused by a protein known as amyloid-beta, or Abeta, which clumps together in the brain, forming plaques that are thought to destroy neurons. This destruction starts early, too, and can presage clinical signs of the disease by up to 20 years.
For decades now, researchers have been trying, with limited success, to develop drugs that prevent this clumping. Such drugs require a “target” — a structure they can bind to, thereby preventing the toxic actions of Abeta. (more…)
TeselaGen’s DNA construction technology makes genetic engineering cheaper and faster.
Sequencing, splicing and expressing DNA may seem to be the quintessence of cutting-edge science—indeed DNA manipulation has revolutionized fields such as biofuels, chemicals and medicine. But in fact, the actual process can still be tedious and labor-intensive, something Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Nathan Hillson learned the hard way.
After struggling for two days to design a protocol to put together a genetic circuit with 10 pieces of DNA—using a spreadsheet as his primary tool—he was dismayed to discover that an outside company could have done the whole thing, including parts and labor, for lower cost than him ordering the oligonucleotides himself. “I learned two things: one, I never wanted to go through that process again, and two, it’s extremely important to do the cost-effectiveness calculation,” said Hillson, a biochemist who also directs the synthetic biology program at the Berkeley Lab-led Joint BioEnergy Institute (JBEI). “So that was the genesis of the j5 software. This is the perfect thing to teach a computer to do.” (more…)
EAST LANSING, Mich. — You’d be amazed at how much you can learn from a plant.
In a paper published this week in the journal Science, a Michigan State University professor and a colleague discuss why if humans are to survive as a species, we must turn more to plants for any number of valuable lessons.
“Metabolism of plants provides humans with fiber, fuel, food and therapeutics,” said Robert Last, an MSU professor of biochemistry and molecular biology. “As the human population grows and nonrenewable energy sources diminish, we need to rely increasingly on plants and to increase the sustainability of agriculture.” (more…)
UCLA-created nanoscale protein containers could aid drug, vaccine delivery
UCLA biochemists have designed specialized proteins that assemble themselves to form tiny molecular cages hundreds of times smaller than a single cell. The creation of these miniature structures may be the first step toward developing new methods of drug delivery or even designing artificial vaccines.
*Anatomically modern humans interbred with more archaic hominin forms even before they migrated out of Africa, a UA-led team of researchers has found.*
It is now widely accepted that anatomically modern humans of the species Homo sapiens originated in Africa and eventually spread throughout the world. Ancient DNA recovered from fossil Neanderthal bones suggests they interbred with more archaic hominin forms once they had left their evolutionary cradle for the cooler climates of Eurasia, but whether they exchanged genetic material with other, now extinct archaic hominin varieties in Africa remained unclear.