Tag Archives: morphology

Marrow microenvironment

Research provides new insights into bone biology

Bone marrow, the spongy tissue inside long bones, produces new blood cells and helps the lymphatic system work properly.  But it may also turn out to be a progressively hostile microenvironment that induces vascular dysfunction and ossification, or hardening, of blood vessels.

Rhonda Prisby, who is using a rat model to study bone vascular physiology and morphology, was recently surprised when she used light microscopy to look at bone marrow vessels. (more…)

Read More

All for One: What Makes an Individual

Life as we know it has certain properties that are consistent regardless whether you’re looking at a bacterial colony in a petri dish or a primate colony in South America. Rick Michod, UA professor and department head of ecology and evolutionary biology, has received $1.3 million from NASA to investigate what properties of biology define an individual organism.

Many things in life are not fair. But some things are at least consistent.

For example, all life as we know it has certain universal properties, which presumably define how life would be organized anywhere it evolved in the universe, said Richard Michod, professor and head of the department of ecology and evolutionary biology at the University of Arizona.  (more…)

Read More

Cambrian Fossil Pushes Back Evolution of Complex Brains

Complex brains evolved much earlier than previously thought, as evidenced by a 520-million-year-old fossilized arthropod with remarkably well-preserved brain structures.

The remarkably well-preserved fossil of an extinct arthropod shows that anatomically complex brains evolved earlier than previously thought and have changed little over the course of evolution. According to University of Arizona neurobiologist Nicholas Strausfeld, who co-authored the study describing the specimen, the fossil is the earliest known to show a brain.

The discovery will be published in the Oct. 11 issue of the journal Nature. (more…)

Read More

Self-Assembling Nanorods: Berkeley Lab Researchers Obtain 1, 2 and 3D Nanorod Arrays and Networks

A relatively fast, easy and inexpensive technique for inducing nanorods – rod-shaped semiconductor nanocrystals – to self-assemble into one-, two- and even three-dimensional macroscopic structures has been developed by a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique should enable more effective use of nanorods in solar cells, magnetic storage devices and sensors. It should also help boost the electrical and mechanical properties of nanorod-polymer composites.

Leading this project was Ting Xu, a polymer scientist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California (UC) Berkeley’s Departments of Materials Sciences and Engineering, and Chemistry. Xu and her research group used block copolymers – long sequences or “blocks” of one type of monomer bound to blocks of another type of monomer – as a platform to guide the self-assembly of nanorods into complex structures and hierarchical patterns. Block copolymers have an innate ability to self-assemble into well-defined arrays of nano-sized structures over macroscopic distances. (more…)

Read More