Tag Archives: block copolymer

Polymer ‘pens’

Epps, DuPont receive NSF funding to develop new approach to manufacture nanostructured arrays

Miniaturization of electronic devices has been ongoing since well before the first room-sized computer was built more than half a century ago. A hand-held smart phone now holds far more data than that behemoth of the late 1940s, but continuing this trend toward tiny has become more challenging. (more…)

Read More

Improving Batteries

UD doctoral student studies ways to improve lithium battery performance

Lithium batteries are used in many devices such as cell phones, computers and cameras, among others.

University of Delaware doctoral student Wei-Fan Kuan is investigating ways to improve membranes used in lithium batteries by capitalizing on the innate properties of block copolymers.

It is work that he believes will become increasingly important as the components in electronic devices continue to get smaller. (more…)

Read More

Self-Assembling Nanorods: Berkeley Lab Researchers Obtain 1, 2 and 3D Nanorod Arrays and Networks

A relatively fast, easy and inexpensive technique for inducing nanorods – rod-shaped semiconductor nanocrystals – to self-assemble into one-, two- and even three-dimensional macroscopic structures has been developed by a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). This technique should enable more effective use of nanorods in solar cells, magnetic storage devices and sensors. It should also help boost the electrical and mechanical properties of nanorod-polymer composites.

Leading this project was Ting Xu, a polymer scientist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California (UC) Berkeley’s Departments of Materials Sciences and Engineering, and Chemistry. Xu and her research group used block copolymers – long sequences or “blocks” of one type of monomer bound to blocks of another type of monomer – as a platform to guide the self-assembly of nanorods into complex structures and hierarchical patterns. Block copolymers have an innate ability to self-assemble into well-defined arrays of nano-sized structures over macroscopic distances. (more…)

Read More