It’s a jungle out there in the suburbs, where many wild mammals are thriving near humans. That’s the conclusion of alarge-scale study using camera trap images from hundreds of citizen scientists in Washington, D.C., and Raleigh, North Carolina.(more…)
COLUMBIA, Mo. – The zebrafish, a tropical freshwater fish similar to a minnow and native to the southeastern Himalayan region, is well established as a key tool for researchers studying human diseases, including brain disorders. Using zebrafish, scientists can determine how individual neurons develop, mature and support basic functions like breathing, swallowing and jaw movement. Researchers at the University of Missouri say that learning about neuronal development and maturation in zebrafish could lead to a better understanding of birth defects such as spina bifida in humans.
“We are studying how neurons move to their final destinations,” said Anand Chandrasekhar, professor of biological sciences and a researcher in the Bond Life Sciences Center at MU. “It’s especially critical in the nervous system because these neurons are generating circuits similar to what you might see in computers. If those circuits don’t form properly, and if different types of neurons don’t end up in the right locations, the behavior and survival of the animal will be compromised.” (more…)
A tiny bat found in the Netherlands is believed to provide the first direct evidence that British bats migrate over the sea between the UK and mainland Europe.
The bat, a Nathusius’ pipistrelle, flew from Blagdon near Bristol across the country and over the North Sea before settling in a farm building near the coast in Friesland – a direct journey of 596 kilometres (370 miles).
Bat experts in both countries are working together to learn more about this remarkable journey and its implications for bat conservation and offshore windfarms. (more…)
165 million-year-old omnivore may have had armadillo-like gait
“We finally have a glimpse of what may be the ancestral condition of all mammals, by looking at what is preserved in Megaconus. It allows us to piece together poorly understood details of the critical transition of modern mammals from pre-mammalian ancestors,” said Zhe-Xi Luo, professor of organismal biology and anatomy. (more…)
Answer may be ‘adaptive zones’ that limit species number, life scientists report
There are more than 400,000 species of beetles and only two species of the tuatara, a reptile cousin of snakes and lizards that lives in New Zealand. Crocodiles and alligators, while nearly 250 million years old, have diversified into only 23 species. Why evolution has produced “winners” — including mammals and many species of birds and fish — and “losers” is a major question in evolutionary biology.
Scientists have often posited that because some animal and plant lineages are much older than others, they have had more time to produce new species (the dearth of crocodiles notwithstanding). This idea — that time is an important predictor of species number — underlies many theoretical models used by biologists. However, it fails to explain species numbers across all multi-cellular life on the planet, a team of life scientists reports Aug. 28 in the online journal PLoS Biology, a publication of the Public Library of Science. (more…)
Scientists have for the first time watched and manipulated stem cells as they regenerate tissue in an uninjured mammal, Yale researchers report July 1 online in the journal Nature.
Using a sophisticated imaging technique, the researchers also demonstrated that mice lacking a certain type of cell do not regrow hair. The same technique could shed light on how stem cells interact with other cells and trigger repairs in a variety of other organs, including lung and heart tissue.
“This tells us a lot about how the tissue regeneration process works,” said Valentina Greco, assistant professor of genetics and of dermatology at the Yale Stem Cell Center, researcher for the Yale Cancer Center and senior author of the study. (more…)
Conventional wisdom holds that during the Mesozoic Era, mammals were small creatures that held on at life’s edges. But at least one mammal group, rodent-like creatures called multituberculates, actually flourished during the last 20 million years of the dinosaurs’ reign and survived their extinction 66 million years ago.
New research led by a University of Washington paleontologist suggests that the multituberculates did so well in part because they developed numerous tubercles (bumps, or cusps) on their back teeth that allowed them to feed largely on angiosperms, flowering plants that were just becoming commonplace. (more…)