Tag Archives: chemical signature

Chemical tags in ear bones track Alaska’s Bristol Bay salmon

A chemical signature recorded on the ear bones of Chinook salmon from Alaska’s Bristol Bay region could tell scientists and resource managers where they are born and how they spend their first year of life. (more…)

Read More

How Did Earth’s Primitive Chemistry Get Kick Started?

How did life on Earth get started? Three new papers co-authored by Mike Russell, a research scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., strengthen the case that Earth’s first life began at alkaline hydrothermal vents at the bottom of oceans. Scientists are interested in understanding early life on Earth because if we ever hope to find life on other worlds — especially icy worlds with subsurface oceans such as Jupiter’s moon Europa and Saturn’s Enceladus — we need to know what chemical signatures to look for.

Two papers published recently in the journal Philosophical Transactions of the Royal Society B provide more detail on the chemical and precursor metabolic reactions that have to take place to pave the pathway for life. Russell and his co-authors describe how the interactions between the earliest oceans and alkaline hydrothermal fluids likely produced acetate (comparable to vinegar). The acetate is a product of methane and hydrogen from the alkaline hydrothermal vents and carbon dioxide dissolved in the surrounding ocean. Once this early chemical pathway was forged, acetate could become the basis of other biological molecules. They also describe how two kinds of “nano-engines” that create organic carbon and polymers — energy currency of the first cells — could have been assembled from inorganic minerals. (more…)

Read More

Microbes Help Hyenas Communicate via Scent

EAST LANSING, Mich. — Bacteria in hyenas’ scent glands may be the key controllers of communication.

The results, featured in the current issue of Scientific Reports, show a clear relationship between the diversity of hyena clans and the distinct microbial communities that reside in their scent glands, said Kevin Theis, the paper’s lead author and Michigan State University postdoctoral researcher.

“A critical component of every animal’s behavioral repertoire is an effective communication system,” said Theis, who co-authored the study with Kay Holekamp, MSU zoologist. “It is possible that without their bacteria, many animals couldn’t ‘say’ much at all.” (more…)

Read More