Researchers at North Carolina State University have developed a simple, effective and relatively inexpensive technique for removing lignin from the plant material used to make biofuels, which may drive down the cost of biofuel production.
Lignin, nature’s way of protecting plant cell walls, is difficult to break down or remove from plant materials called “biomass,” such as the non-edible parts of the corn plant. However, that lignin needs to be extracted in order to reach the energy-rich cellulose that is used to make biofuels. (more…)
In the perpetual darkness of a limestone cave, UA researchers have discovered a surprisingly diverse ecosystem of microbes eking out a living from not much more than drip water, rock and air. The discovery not only expands our understanding of how microbes manage to colonize every niche on the planet but also could lead to applications ranging from environmental cleanup solutions to drug development.
Hidden underneath the hilly grasslands studded with ocotillos and mesquite trees in southeastern Arizona lies a world shrouded in perpetual darkness: Kartchner Caverns, a limestone cave system renowned for its untouched cave formations, sculpted over millennia by groundwater dissolving the bedrock and carving out underground rooms, and passages that attract tourists from all over the world. (more…)
The first dynamic regulatory system that prevents the build-up of toxic metabolites in engineered microbes has been reported by a team of researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI). The JBEI researchers used their system to double the production in Escherichia coli (E. coli) of amorphadiene, a precursor to the premier antimalarial drug artemisinin.
Using genome-wide transcriptional analysis, the JBEI researchers identified native regions of DNA – called “promoters” – in E. coli that respond to toxic metabolites by promoting the expression of protective genes. They then developed a system based on these promoters for regulating artificial metabolic pathways engineered into the E.coli to enable the bacterium to produce amorphadiene. (more…)
Im Jahr 2012 führte die wachsende Nutzung von Wind, Sonne und Biomasse zu einem Rekordwert in der bundesweiten Wertschöpfung von 17 Milliarden Euro. Zu diesem Ergebnis kommt das Institut für ökologische Wirtschaftsforschung (IÖW) in einer aktuellen Studie für Greenpeace.
Zwei Drittel der Wertschöpfung kommt dabei Städten und Gemeinden zu Gute. “Die Erneuerbaren Energien treiben die Wirtschaft in strukturschwachen ländlichen Regionen an”, sagt Andree Böhling, Energie-Experte von Greenpeace. Diesen Motor dürfe die Bundesregierung mit ihrer Reform des Erneuerbaren Energien-Gesetzes nicht fahrlässig abwürgen. (more…)
A surprising number of microorganisms – more than 100 times more kinds than reported just four months ago – are leaping the biggest gap on the planet. Hitching rides in the upper troposphere, they’re making their way from Asia across the Pacific Ocean and landing in North America.
For the first time researchers have been able to gather enough biomass in the form of DNA to apply molecular methods to samples from two large dust plumes originating in Asia in the spring of 2011. The scientists detected more than 2,100 unique species compared to only 18 found in the very same plumes using traditional methods of culturing, results they published in July. (more…)
Joint BioEnergy Institute Researchers Find New Access to Abundant Biomass for Advanced Biofuels
After cellulose, xylan is the most abundant biomass material on Earth, and therefore represents an enormous potential source of stored solar energy for the production of advance biofuels. A major roadblock, however, has been extracting xylan from plant cell walls. Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have taken a significant step towards removing this roadblock by identifying a gene in rice plants whose suppression improves both the extraction of xylan and the overall release of the sugars needed to make biofuels.
The newly identified gene – dubbed XAX1 – acts to make xylan less extractable from plant cell walls. JBEI researchers, working with a mutant variety of rice plant – dubbed xax1 – in which the XAX1 gene has been “knocked-out” found that not only was xylan more extractable, but saccharification – the breakdown of carbohydrates into releasable sugars – also improved by better than 60-percent. Increased saccharification is key to more efficient production of advanced biofuels. (more…)
It’s morning, deep in the Amazon jungle. In the still air innumerable leaves glisten with moisture, and fog drifts through the trees. As the sun rises, clouds appear and float across the forest canopy … but where do they come from? Water vapor needs soluble particles to condense on. Airborne particles are the seeds of liquid droplets in fog, mist, and clouds.
To learn how aerosol particles form in the Amazon, Mary Gilles of the Chemical Sciences Division at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and David Kilcoyne of the Lab’s Advanced Light Source (ALS) worked with Christopher Pöhlker of Germany’s Max Planck Institute for Chemistry (MPIC) as part of an international team of scientists led by MPIC’s Meinrat Andreae and Ulrich Pöschl. They analyzed samples of naturally formed aerosols collected above the forest floor, deep in the rainforest. (more…)
Women in rural Bangladesh prefer inexpensive, traditional stoves for cooking over modern ones — despite significant health risks, according to a Yale study in the Proceedings of the National Academy of Sciences.
A large majority of respondents (94%) believed that indoor smoke from the traditional stoves is harmful. Still, Bangladeshi women opted for traditional cookstove technology so they could afford basic needs.
“Non-traditional cookstoves might be more successful if they were designed with features valued more highly by users, such as reducing operating costs even if they might not reduce environmental impact,” said Mushfiq Mobarak, a co-author and associate professor of economics at the Yale School of Management. (more…)