Category Archives: Science

Rose McDermott: The Political Genome

A recent review of research co-authored by Rose McDermott highlights the role that genes play in political preferences, an area of study that began to draw significant attention in the last decade. McDermott speaks with Courtney Coelho about this growing field of research, its evolutionary roots, and whether it means anything for the prediction of future election results.

The connection between biology and political science is relatively new, but it’s one that has grown rapidly, with a boom in research linking genetics and political preferences in the last decade. Rose McDermott, professor of political science, has done research on this topic and recently co-authored a review, published in Trends in Genetics, of studies in recent years. (more…)

Read More

Astronomers Test Einstein in a New Regime Using Pair of Burnt-Out Stars

AUSTIN, Texas — A team of astronomers led by researchers from The University of Texas at Austin has confirmed the emission of gravitational waves from the second-strongest known source in our galaxy by studying the shrinking orbital period of a unique pair of burnt-out stars. Their observations tested Albert Einstein’s theory of general relativity in a new regime. The results will be published soon in The Astrophysical Journal Letters.

Last year, the same team discovered that the two white dwarf stars are so close together that they make a complete orbit in less than 13 minutes, and they should be gradually slipping closer. The system, called SDSS J065133.338+284423.37 (J0651 for short), contains two white dwarf stars, which are the remnant cores of stars like our sun. (more…)

Read More

Why are There so Many Species of Beetles and So few Crocodiles?

Answer may be ‘adaptive zones’ that limit species number, life scientists report

There are more than 400,000 species of beetles and only two species of the tuatara, a reptile cousin of snakes and lizards that lives in New Zealand. Crocodiles and alligators, while nearly 250 million years old, have diversified into only 23 species. Why evolution has produced “winners” — including mammals and many species of birds and fish — and “losers” is a major question in evolutionary biology.

Scientists have often posited that because some animal and plant lineages are much older than others, they have had more time to produce new species (the dearth of crocodiles notwithstanding). This idea — that time is an important predictor of species number — underlies many theoretical models used by biologists. However, it fails to explain species numbers across all multi-cellular life on the planet, a team of life scientists reports Aug. 28 in the online journal PLoS Biology, a publication of the Public Library of Science. (more…)

Read More

Plants Unpack Winter Coats When Days Get Shorter

EAST LANSING, Mich. — Mechanisms that protect plants from freezing are placed in storage during the summer and wisely unpacked when days get shorter.

In the current issue of the Proceedings of the National Academy of Sciences, Michael Thomashow, University Distinguished Professor of molecular genetics, demonstrates how the CBF (C-repeat binding factor) cold response pathway is inactive during warmer months when days are long, and how it’s triggered by waning sunlight to prepare plants for freezing temperatures. (more…)

Read More

Behind Closed Doors

UD researchers show how beneficial soil bacteria can boost plant immunity

With the help of beneficial bacteria, plants can slam the door when disease pathogens come knocking, University of Delaware researchers have discovered.

A scientific team under the leadership of Harsh Bais, assistant professor of plant and soil sciences in UD’s College of Agriculture and Natural Resources, found that when pathogens attempt to invade a plant through the tiny open pores in its leaves, a surprising ally comes to the rescue. Soil bacteria at the plant’s roots signal the leaf pores to close, thwarting infection. (more…)

Read More

Remembering Neil Armstrong, 1930–2012

Neil A. Armstrong, the first man to walk on the moon, was born in Wapakoneta, Ohio, on August 5, 1930. He began his NASA career in Ohio.

After serving as a naval aviator from 1949 to 1952, Armstrong joined the National Advisory Committee for Aeronautics (NACA) in 1955. His first assignment was with the NACA Lewis Research Center (now NASA Glenn) in Cleveland. Over the next 17 years, he was an engineer, test pilot, astronaut and administrator for NACA and its successor agency, the National Aeronautics and Space Administration (NASA).

As a research pilot at NASA’s Flight Research Center, Edwards, Calif., he was a project pilot on many pioneering high speed aircraft, including the well known, 4000-mph X-15. He has flown over 200 different models of aircraft, including jets, rockets, helicopters and gliders. (more…)

Read More

Super-Strong, High-Tech Material Found to be Toxic to Aquatic Animals by Researchers at MU and USGS

Carbon nanotubes hold promise for industry but need monitoring, say researchers

COLUMBIA, Mo. — Carbon nanotubes (CNTs) are some of the strongest materials on Earth and are used to strengthen composite materials, such as those used in high-performance tennis rackets. CNTs have potential uses in everything from medicine to electronics to construction. However, CNTs are not without risks. A joint study by the University of Missouri and United States Geological Survey found that they can be toxic to aquatic animals. The researchers urge that care be taken to prevent the release of CNTs into the environment as the materials enter mass production.

“The great promise of carbon nanotubes must be balanced with caution and preparation,” said Baolin Deng, professor and chair of chemical engineering at the University of Missouri. “We don’t know enough about their effects on the environment and human health. The EPA and other regulatory groups need more studies like ours to provide information on the safety of CNTs.” (more…)

Read More

Form, Function and Folding: In Collaboration with Berkeley Lab, a Team of Scientists Move Toward Rational Design of Artificial Proteins

In the world of proteins, form defines function. Based on interactions between their constituent amino acids, proteins form specific conformations, folding and twisting into distinct, chemically directed shapes. The resulting structure dictates the proteins’ actions; thus accurate modeling of structure is vital to understanding functionality.

Peptoids, the synthetic cousins of proteins, follow similar design rules. Less vulnerable to chemical or metabolic breakdown than proteins, peptoids are promising for diagnostics, pharmaceuticals, and as a platform to build bioinspired nanomaterials, as scientists can build and manipulate peptoids with great precision. But to design peptoids for a specific function, scientists need to first untangle the complex relationship between a peptoid’s composition and its function-defining folded structure. (more…)

Read More