A class of drug currently being used to treat leukaemia has the unexpected side-effect of boosting immune responses against many different cancers, reports a new study led by scientists at UCL and the Babraham Institute, Cambridge.
The drugs, called p110δ inhibitors, have shown such remarkable efficacy against certain leukaemias in recent clinical trials that patients on the placebo were switched to the real drug. Until now, however, they have not been tested in other types of cancer. (more…)
Around 20 percent of all humans are persistently colonized with Staphylococcus aureus bacteria, a leading cause of skin infections and one of the major sources of hospital-acquired infections, including the antibiotic-resistant strain MRSA.
University of Chicago scientists have recently discovered one of the keys to the immense success of S. aureus—the ability to hijack a primary human immune defense mechanism and use it to destroy white blood cells. The study was published Nov. 15 in Science. (more…)
Misguided killer T cells may be the missing link in sustained tissue damage in the brains and spines of people with multiple sclerosis, findings from the University of Washington reveal. Cytoxic T cells, also known as CD8+ T cells, are white blood cells that normally are in the body’s arsenal to fight disease.
Multiple sclerosis is characterized by inflamed lesions that damage the insulation surrounding nerve fibers and destroy the axons, electrical impulse conductors that look like long, branching projections. Affected nerves fail to transmit signals effectively. (more…)
If you throw a rubber balloon filled with water against a wall, it will spread out and deform on impact, while the same balloon filled with honey, which is more viscous, will deform much less. If the balloon’s elastic rubber was stiffer, an even smaller change in shape would be observed.
By simply analyzing how much a balloon changes shape upon hitting a wall, you can uncover information about its physical properties.
Although cells are not simple sacks of fluid, they also contain viscous and elastic properties related to the membranes that surround them; their internal structural elements, such as organelles; and the packed DNA arrangement in their nuclei. Because variations in these properties can provide information about cells’ state of activity and can be indicative of diseases such as cancer, they are important to measure. (more…)
The dyes which are injected into the skin to create tattoos move with time – permanently altering the look of a given design. In this month’s Mathematics Today Dr Ian Eames, a Reader in Fluid Mechanics at UCL, publishes a mathematical model enabling us to estimate the movement of these ink particles and predict how specific tattoo designs will look several years in the future.
“Tattoos are incredibly popular worldwide with more than a third of 18-25 year olds in the USA sporting at least one design,” says Dr Eames. “A great deal of work has already been done on the short term fate of ink particles in the skin, tracking them over periods of just a few months – but much less is known about how these particles move over longer periods of time. (more…)
COLUMBUS, Ohio – Chronic inhalation of polluted air appears to activate a protein that triggers the release of white blood cells, setting off events that lead to widespread inflammation, according to new research in an animal model.
This finding narrows the gap in researchers’ understanding of how prolonged exposure to pollution can increase the risk for cardiovascular problems and other diseases. (more…)