ANN ARBOR—A banana a day may not keep the doctor away, but a substance originally found in bananas and carefully edited by scientists could someday fight off a wide range of viruses, new research suggests.(more…)
Imagine that an invisible, microscopic invader has found its way into your body and hijacked the cellular machinery that keeps you healthy. Inhabiting the gray area between living and nonliving, the invader can only reproduce once it makes its new home inside of your cells, eventually causing you to fall ill. How do physicians and scientists combat this uninvited guest? (more…)
Researchers at UD use ancient gene to study virus biology
Researchers at the University of Delaware have discovered that an ancient gene — ribonucleotide reductase (RNR), which occurs in all cellular life — provides important biological insights into the characteristics of unknown viruses in the sea. (more…)
Using bacteria as bait, UA scientists caught wild ocean viruses and found that the genetic lines between virus types in nature are less blurred than previously thought.
A fishing expedition of microscopic proportions led by University of Arizona ecologists revealed that the lines between virus types in nature are less blurred than previously thought. (more…)
UA researchers have discovered that two separate defects combine to contribute to reduced T cell responses with aging.
Researchers at the University of Arizona College of Medicine – Tucson have found a key to understanding the aging immune system’s decreased response to infectious diseases, which remain among the leading causes of death in older adults.
Aging profoundly affects the immune system’s T cells – the types of white blood cells that defend against intracellular pathogens, such as viruses, intracellular bacteria or parasites, such as malaria. Newly encountered pathogens are attacked by what are known as naïve T cells, some of which then learn and remember, becoming memory T cells that prevent reinfection when they encounter the same pathogen again. But naïve T cells become depleted with age, leading to less effective immune responses against new infections. (more…)
Knowing the temperatures that viruses, bacteria, worms and all other parasites need to grow and survive could help determine the future range of infectious diseases under climate change, according to new research.
Princeton University researchers developed a model that can identify the prospects for nearly any disease-causing parasite as the Earth grows warmer, even if little is known about the organism. Their method calculates how the projected temperature change for an area would alter the creature’s metabolism and life cycle, the researchers report in the journal Ecology Letters. (more…)
*Proprotein convertases are enzymes that activate many essential proteins, but they are also implicated in many processes that cause disease. In a research review in the New England Journal of Medicine, Andrew Artenstein and Steven Opal argue that proprotein convertases are potentially rich targets for developing therapies.*
Most people have never heard of proprotein convertases, but the enzymes activate many proteins that are essential for life. Unfortunately, their fundamental role puts them in the middle of many processes that cause disease – not just cancer or athlerosclerosis, but both of those and Alzheimer’s and anthrax and the flu and an amazing variety of other maladies.
In a research review article appearing Dec. 29 in the New England Journal of Medicine, Andrew Artenstein, physician-in-chief in the Department of Medicine at Memorial Hospital, and Steven Opal, chief of infectious diseases at Memorial Hospital, argue that proprotein convertases (PCs) are potentially rich targets for developing therapies. Artenstein, who with Opal is on the faculty of the Warren Alpert School of Medicine, explained PCs to David Orenstein. (more…)
*Berkeley Lab Researchers Resolve Sub-nanometer Structure of Cascade, an Ally for Human Immune System*
A complex of proteins in the bacterium E.coli that plays a critical role in defending the microbe from viruses and other invaders has been discovered to have the shape of a seahorse by researchers with the U.S Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). This discovery holds far more implications for your own health than you might think.
In its never-ending battle to protect you from infections by bacteria, viruses, toxins and other invasive elements, your immune system has an important ally – many allies in fact. By the time you reach adulthood, some 90-percent of the cells in your body are microbial. These microbes – collectively known as the microbiome – play a critical role in preserving the health of their human host. (more…)