UD researchers show how beneficial soil bacteria can boost plant immunity
With the help of beneficial bacteria, plants can slam the door when disease pathogens come knocking, University of Delaware researchers have discovered.
A scientific team under the leadership of Harsh Bais, assistant professor of plant and soil sciences in UD’s College of Agriculture and Natural Resources, found that when pathogens attempt to invade a plant through the tiny open pores in its leaves, a surprising ally comes to the rescue. Soil bacteria at the plant’s roots signal the leaf pores to close, thwarting infection. (more…)
Ocean eddies help jump-start plankton blooms that spread across hundreds of square miles
On this July 4th week, U.S. beachgoers are thronging their way to seaside resorts and parks to celebrate with holiday fireworks. But across the horizon and miles out to sea toward the north, the Atlantic Ocean’s own spring and summer ritual unfolds. It entails the blooming of countless microscopic plants, or phytoplankton.
In what’s known as the North Atlantic Bloom, an immense number of phytoplankton burst into existence, first “greening,” then “whitening” the sea as one or more species take the place of others.
What turns on this huge bloom, what starts these ocean fireworks? Is it the Sun’s warmth? (more…)
COLUMBUS, Ohio – Scientists have designed a screening tool that provides a fast, easy and relatively inexpensive way to predict levels of a specific toxin in lakes that are prone to blue-green algal blooms.
Blue-green algae is not your average pond scum – rather than consisting of plant-like organisms, blue-green algae actually are cyanobacteria, and some species are linked to the production and release of the toxin microcystin into the water. Human exposure to the toxin through drinking or recreational water contact can threaten public health by causing liver damage, neurological problems and gastrointestinal illness in humans. (more…)
ANN ARBOR, Mich.— Loss of biodiversity appears to impact ecosystems as much as climate change, pollution and other major forms of environmental stress, according to a new study from an international research team.
The study is the first comprehensive effort to directly compare the impacts of biological diversity loss to the anticipated effects of a host of other human-caused environmental changes.
The results highlight the need for stronger local, national and international efforts to protect biodiversity and the benefits it provides, according to the researchers, who are based at nine institutions in the United States, Canada and Sweden. (more…)
COLUMBUS, Ohio – Using a new ultrafast camera, researchers have recorded the first real-time image of two atoms vibrating in a molecule.
Key to the experiment, which appears in this week’s issue of the journal Nature, is the researchers’ use of the energy of a molecule’s own electron as a kind of “flash bulb” to illuminate the molecular motion. (more…)
SAN FRANCISCO – A planet made of diamonds may sound lovely, but you wouldn’t want to live there.
A new study suggests that some stars in the Milky Way could harbor “carbon super-Earths” – giant terrestrial planets that contain up to 50 percent diamond.
But if they exist, those planets are likely devoid of life as we know it. (more…)
Washington, D.C. — The composition of the Earth’s core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen is the most abundant element in the planet, so it is not unreasonable to expect oxygen might be one of the dominant “light elements” in the core. However, new research from a team including Carnegie’s Yingwei Fei shows that oxygen does not have a major presence in the outer core. This has major implications for our understanding of the period when the Earth formed through the accretion of dust and clumps of matter. Their work is published Nov. 24 in Nature. (more…)
Reporting in Nature Materials this week, researchers from the London Centre for Nanotechnology and the Physics Department of Sapienza University of Rome have discovered a technique to ‘draw’ superconducting shapes using an X-ray beam. This ability to create and control tiny superconducting structures has implications for a completely new generation of electronic devices.
Superconductivity is a special state where a material conducts electricity with no resistance, meaning absolutely zero energy is wasted. (more…)