Researchers at Michigan State University have discovered a protein that does its best work with one foot in the grave.
The study, which appears in the current issue of the Journal of Biological Chemistry, focuses on the nontraditional lifestyle of Retinoblastoma tumor suppressor proteins, which could lead to new ways to treat cancer.
“Retinoblastoma proteins are unique in that they use controlled destruction to do their jobs in a timely but restrained fashion,” said Liang Zhang, a lead author and MSU cell and molecular biology graduate student. “This is an unusual way for proteins to act.” (more…)
Moths are able to enjoy a pollinator’s buffet of flowers – in spite of being among the insect world’s picky eaters – because of two distinct “channels” in their brains, scientists at the University of Washington and University of Arizona have discovered.
One olfactory channel governs innate preferences of the palm-sized hawk moths that were studied – insects capable of traveling miles in a single night in search of favored blossoms. The other allows them to learn about alternate sources of nectar when their first choices are not available.
For moths, the ability to seek and remember alternate sources of food helps them survive harsh, food-deprived conditions. Scientists knew bees could learn, but this is the first proof that moths can too. (more…)
Berkeley Lab research could lead to new ways to ID women who have higher risk of breast cancer from low-dose radiation
Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have identified tissue mechanisms that may influence a woman’s susceptibility or resistance to breast cancer after exposure to low-dose ionizing radiation, such as the levels used in full-body CT scans and radiotherapy.
The research could lead to new ways to identify women who have higher or lower risks of breast cancer from low-dose radiation. Such a predictive tool could help guide the treatment of cancer patients who may be better served by non-radiation therapies. (more…)
The first detailed and complete picture of a protein complex that is tied to human birth defects as well as the progression of many forms of cancer has been obtained by an international team of researchers led by scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). Knowing the architecture of this protein, PRC2, for Polycomb Repressive Complex 2, should be a boon to its future use in the development of new and improved therapeutic drugs.
“We present a complete molecular organization of human PRC2 that offers an invaluable structural context for understanding all of the previous biochemical and functional data that has been collected on this complex,” says Berkeley Lab biophysicist Eva Nogales, an electron microscopy expert who led this research. “Our model should also be an invaluable tool for the design of new experiments aimed at asking detailed questions about the mechanisms that enable PRC2 to function and how those mechanisms might be exploited.” (more…)
EAST LANSING, Mich. — Mechanisms that protect plants from freezing are placed in storage during the summer and wisely unpacked when days get shorter.
In the current issue of the Proceedings of the National Academy of Sciences, Michael Thomashow, University Distinguished Professor of molecular genetics, demonstrates how the CBF (C-repeat binding factor) cold response pathway is inactive during warmer months when days are long, and how it’s triggered by waning sunlight to prepare plants for freezing temperatures. (more…)
UMN study shows eating less is about reduced desire as well as willpower
MINNEAPOLIS / ST. PAUL — New research from the University of Minnesota’s Carlson School of Management suggests learning how to stop enjoying unhealthy food sooner may play a pivotal role in combating America’s obesity problem. The research, published in the Journal of Consumer Research, explores how satiation, defined as the drop in liking during repeated consumption, can be a positive mechanism when it lowers the desire for unhealthy foods.
Pollination could be a chaotic disaster. With hundreds of pollen grains growing long tubes to ovules to deliver their sperm to female gametes, how can a flower ensure that exactly two fertile sperm reach every ovule? In a new study, Brown University biologists report the discovery of how plants optimize the distribution of pollen for successful reproduction.
PROVIDENCE, R.I. [Brown University] — Next Mother’s Day, say it with an evolved model of logistical efficiency — a flower. A new discovery about how nature’s icons of romance manage the distribution of sperm among female gametes with industrial precision helps explain why the delicate beauties have reproduced prolifically enough to dominate the earth.
In pollination, hundreds of sperm-carrying pollen grains stick to the stigma suspended in the middle of a flower and quickly grow a tube down a long shaft called a style toward clusters of ovules, which hold two female sex cells. This could be a chaotic frenzy, but for the plant to succeed, exactly two fertile sperm should reach the two cells in each ovule — no more, no less. No ovule should be left out, either because too many tubes have gone elsewhere, or because the delivered sperm don’t work. (more…)
The theory that pigeons’ famous skill at navigation is down to iron-rich nerve cells in their beaks has been disproved by a new study published in Nature.
The study shows that iron-rich cells in the pigeon beak are in fact specialised white blood cells, called macrophages. This finding, which shatters the established dogma, puts the field back on course as the search for magnetic cells continues.(more…)