As part of a major federal initiative, UCLA has been awarded $15M to create a wireless, implantable device that could restore memory to millions
UCLA has been tapped by the Defense Advanced Research Projects Agency to spearhead an innovative project aimed at developing a wireless, implantable brain device that could help restore lost memory function in individuals who have suffered debilitating brain injuries and other disorders. (more…)
Twenty years after the hormone leptin was found to regulate metabolism, appetite, and weight through brain cells called neurons, Yale School of Medicine researchers have found that the hormone also acts on other types of cells to control appetite.
Published in the June 1 issue of Nature Neuroscience, the findings could lead to development of treatments for metabolic disorders such as obesity and diabetes. (more…)
After brain injury, cells on ‘high alert’ prolong immune response, affecting behavior
COLUMBUS, Ohio – A head injury can lead immune-system brain cells to go on “high alert” and overreact to later immune challenges by becoming excessively inflammatory – a condition linked with depressive complications, a new animal study suggests.
The findings could help explain some of the midlife mental-health issues suffered by individuals who experience multiple concussions as young adults, researchers say. And these depressive symptoms are likely inflammation-related, which means they may not respond to common antidepressants. (more…)
Researchers have sequenced the entire messenger RNA – the “genetic photocopies” – contained in the nucleus of a single cell, a long-anticipated step toward better cancer diagnostics and other medical applications.
Researchers have successfully isolated and sequenced the entire messenger RNA – the “genetic photocopies” – contained in the nucleus of a single brain cell. This research, published in the journal Proceedings of the National Academy of Sciences, will help researchers better understand how organs function in health and disease and provide another stepping stone toward personalized medicine. (more…)
Brown researchers have shown that optogenetics — a technique that uses pulses of visible light to alter the behavior of brain cells — can be as good as or possibly better than the older technique of using small bursts of electrical current. Optogenetics had been used in small rodent models. Research reported in Current Biology has shown that optogenetics works effectively in larger, more complex brains.
PROVIDENCE, R.I. [Brown University] — Neuroscientists are eagerly, but not always successfully, looking for proof that optogenetics – a celebrated technique that uses pulses of visible light to genetically alter brain cells to be excited or silenced – can be as successful in complex and large brains as it has been in rodent models. (more…)
Hot flushes are not “in the head,” but new research suggests they may start there. A UA research team has identified a region in the brain that may trigger the uncomfortable surges of heat most women experience in the first few years of menopause.
Hot flushes – also called hot flashes – affect millions of people, and not just women. Yet, it is still unclear what causes the episodes of temperature discomfort, often accompanied by profuse sweating.
Now a team of researchers around Dr. Naomi Rance, a professor in the department of pathology at the UA College of Medicine, has come closer to understanding the mechanism of hot flushes, a necessary step for potential treatment options down the road. This research was published recently in the Proceedings of the National Academy of Sciences. (more…)
*Mechanism holds potential for improving recall in dementia patients*
Have you ever gone to the movies and forgotten where you parked the car? New UCLA research may one day help you improve your memory.
UCLA neuroscientists have demonstrated that they can strengthen memory in human patients by stimulating a critical junction in the brain. Published in the Feb. 9 edition of the New England Journal of Medicine, the finding could lead to a new method for boosting memory in patients with early Alzheimer’s disease.(more…)
Smithsonian researchers report that the brains of tiny spiders are so large that they fill their body cavities and overflow into their legs. As part of ongoing research to understand how miniaturization affects brain size and behavior, researchers measured the central nervous systems of nine species of spiders, from rainforest giants to spiders smaller than the head of a pin. As the spiders get smaller, their brains get proportionally bigger, filling up more and more of their body cavities.
“The smaller the animal, the more it has to invest in its brain, which means even very tiny spiders are able to weave a web and perform other fairly complex behaviors,” said William Wcislo, staff scientist at the Smithsonian Tropical Research Institute in Panama. “We discovered that the central nervous systems of the smallest spiders fill up almost 80 percent of their total body cavity, including about 25 percent of their legs.” (more…)