Tag Archives: water

Berkeley Lab Releases Most Comprehensive Databook on China’s Energy and Environment

In the five years since the China Energy Group of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) released its last edition of the China Energy Databook, China has achieved two dubious distinctions: it surpassed the United States in energy consumption and it surpassed the United States in energy-related emissions of carbon dioxide, becoming the world leader on both scores.

With these important shifts in the global energy landscape, the eighth edition of the China Energy Databook is being released this week. The Databook is the most comprehensive publicly available resource known to exist covering China’s energy and environmental statistics. The China Energy Group researchers have amassed an enormous trove of data from firsthand sources and organized much of it into a relational database, making it far more useful for research and analytical purposes. (more…)

Read More

A key to mass extinctions could boost food, biofuel production

Hydrogen sulfide, the pungent stuff often referred to as sewer gas, is a deadly substance implicated in several mass extinctions, including one at the end of the Permian period 251 million years ago that wiped out more than three-quarters of all species on Earth.

But in low doses, hydrogen sulfide could greatly enhance plant growth, leading to a sharp increase in global food supplies and plentiful stock for biofuel production, new University of Washington research shows. (more…)

Read More

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide  clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)

Read More

Solar Fuel Success

UD-developed solar reactor can produce solar hydrogen, but how much?

Last spring University of Delaware doctoral candidate Erik Koepf and research associate Michael Giuliano spent two months in Switzerland testing a novel solar reactor Koepf developed to produce hydrogen from sunlight.

Eight weeks of sophisticated testing at temperatures up to 1,200 degrees Celsius revealed that the reactor’s mechanical, electrical and thermal systems worked just as Koepf had predicted. (more…)

Read More

Cassini Suggests Icing on a Lake

It’s not exactly icing on a cake, but it could be icing on a lake. A new paper by scientists on NASA’s Cassini mission finds that blocks of hydrocarbon ice might decorate the surface of existing lakes and seas of liquid hydrocarbon on Saturn’s moon Titan. The presence of ice floes might explain some of the mixed readings Cassini has seen in the reflectivity of the surfaces of lakes on Titan.

“One of the most intriguing questions about these lakes and seas is whether they might host an exotic form of life,” said Jonathan Lunine, a paper co-author and Cassini interdisciplinary Titan scientist at Cornell University, Ithaca, N.Y. “And the formation of floating hydrocarbon ice will provide an opportunity for interesting chemistry along the boundary between liquid and solid, a boundary that may have been important in the origin of terrestrial life.” (more…)

Read More

How Computers Push on the Molecules They Simulate

Berkeley Lab bioscientists and their colleagues decipher a far-reaching problem in computer simulations

Because modern computers have to depict the real world with digital representations of numbers instead of physical analogues, to simulate the continuous passage of time they have to digitize time into small slices. This kind of simulation is essential in disciplines from medical and biological research, to new materials, to fundamental considerations of quantum mechanics, and the fact that it inevitably introduces errors is an ongoing problem for scientists.

Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now identified and characterized the source of tenacious errors and come up with a way to separate the realistic aspects of a simulation from the artifacts of the computer method. The research was done by David Sivak and his advisor Gavin Crooks in Berkeley Lab’s Physical Biosciences Division and John Chodera, a colleague at the California Institute of Quantitative Biosciences (QB3) at the University of California at Berkeley. The three report their results in Physical Review X. (more…)

Read More

Cassini Spots Mini Nile River on Saturn Moon

PASADENA, Calif. – Scientists with NASA’s Cassini mission have spotted what appears to be a miniature, extraterrestrial likeness of Earth’s Nile River: a river valley on Saturn’s moon Titan that stretches more than 200 miles (400 kilometers) from its “headwaters” to a large sea. It is the first time images have revealed a river system this vast and in such high resolution anywhere other than Earth.

Scientists deduce that the river, which is in Titan’s north polar region, is filled with liquid hydrocarbons because it appears dark along its entire length in the high-resolution radar image, indicating a smooth surface. (more…)

Read More