Tag Archives: lignocellulosic biomass

Microbial Who-Done-It for Biofuels

New Technique Identifies Populations Within a Microbial Community Responsible for Biomass Deconstruction

One of the keys to commercialization of advanced biofuels is the development of cost-competitive ways to extract fermentable sugars from lignocellulosic biomass. The use of enzymes from thermophiles – microbes that thrive at extremely high temperatures and alkaline conditions – holds promise for achieving this. Finding the most effective of these microbial enzymes, however, has been a challenge. That challenge has now been met by a collaboration led by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI).

Working with a compost-derived consortium of thermophillic bacterium adapted to grow on switchgrass, a leading potential fuel crop, and using a combination of metagenomic and metaproteomic technologies, the collaboration has identified individual microbial species whose enzymes were the most active in deconstructing the switchgrass biomass. Major institutes in addition to JBEI participating in this collaboration included DOE’s Joint Genome Institute (JGI), and EMSL, the Environmental Molecular Sciences Laboratory, a national scientific user facility at Pacific Northwest National Laboratory (PNNL). (more…)

Read More

Making Do with More: Joint BioEnergy Institute Researchers Engineer Plant Cell Walls to Boost Sugar Yields for Biofuels

When blessed with a resource in overwhelming abundance it’s generally a good idea to make valuable use of that resource. Lignocellulosic biomass is the most abundant organic material on Earth. For thousands of years it has been used as animal feed, and for the past two centuries has been a staple of the paper industry. This abundant resource, however, could also supply the sugars needed to produce advanced biofuels that can supplement or replace fossil fuels, providing several key technical challenges are met. One of these challenges is finding ways to more cost-effectively extract those sugars. Major steps towards achieving this breakthrough are being taken by researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI).

“Through the tools of synthetic biology, we have engineered healthy plants whose lignocellulosic biomass can more easily be broken down into simple sugars for biofuels,” says Dominique Loque, who directs the cell wall engineering program for JBEI’s Feedstocks Division. “Working with the model plant, Arabidopsis, as a demonstration tool, we have genetically manipulated secondary cell walls to reduce the production of lignin while increasing the yield of fuel sugars.” (more…)

Read More

Biofuels Blend Right In

Researchers Show Ionic Liquids Effective for Pre-Treating Mixed Blends of Biofuel Feedstocks

Winemakers have long known that blending different grape varietals can favorably balance the flavor characteristics of the wine they produce. In the future, makers of advanced biofuels might use a similar strategy, blending different feedstock varieties to balance the energy characteristics of the transportation fuel they produce.

A collaborative study by researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), a bioenergy research center led by Berkeley Lab, and the Idaho National Laboratory (INL) has shown that an ionic liquid proven to be effective for pre-treating individual biofuel feedstocks is also effective at pre-treating multiple different feedstocks that have been mixed and densified into a blend. (more…)

Read More

More Bang for the Biofuel Buck

Berkeley Lab Researchers Combine Old Fermentation Process For Making Explosives with New Chemical Catalysis to Boost Biofuel Production

A fermentation technique once used to make cordite, the explosive propellant that replaced gunpowder in bullets and artillery shells, may find an important new use in the production of advanced biofuels. With the addition of a metal catalyst, researchers at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the production of acetone, butanol and ethanol from lignocellulosic biomass could be selectively upgraded to the high volume production of gasoline, diesel or jet fuel.

Using the bacterium Clostridium acetobutylicum, the Berkeley Lab researchers fermented the sugars found in biomass into the solvent acetone and the alcohols butanol and ethanol, collectively known as “ABE” products. They then catalyzed these low carbon number products with the transition metal palladium into higher-molecular-mass hydrocarbons that are possible precursors to the three major transportation fuel molecules. The specific type of fuel molecule produced – whether a precursor to gasoline, diesel or jet – was determined by the amount of time the ABE products resided with the palladium catalyst. (more…)

Read More


*Joint BioEnergy Institute Researchers Develop CAD-Type Tools for Engineering RNA Control Systems*

The computer assisted design (CAD) tools that made it possible to fabricate integrated circuits with millions of transistors may soon be coming to the biological sciences. Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed CAD-type models and simulations for RNA molecules that make it possible to engineer biological components or “RNA devices” for controlling genetic expression  in microbes. This holds enormous potential for microbial-based sustainable production of advanced biofuels, biodegradable plastics, therapeutic drugs and a host of other goods now derived from petrochemicals. (more…)

Read More

E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels

*Joint BioEnergy Institute (JBEI) Researchers Reach Milestone on the Road to Biofuels*

A milestone has been reached on the road to developing advanced biofuels that can replace gasoline, diesel and jet fuels with a domestically-produced clean, green, renewable alternative.

Researchers with the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have engineered the first strains of  Escherichia coli bacteria that can digest switchgrass biomass and synthesize its sugars into all three of those transportation fuels. What’s more, the microbes are able to do this without any help from enzyme additives. (more…)

Read More