It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain’s folds to the heart’s multiple chambers. A recent study by Princeton researchers explored this process in lungs and offers insights into the formation of their delicately branching, tree-like airways. (more…)
Sometimes cost saving comes in nanoscale packages.
A new procedure that thickens and thins fluid at the micron level could save consumers and manufacturers money, particularly for soap products that depend on certain molecules to effectively deal with grease and dirt. Researchers at the University of Washington publishedtheir findings online April 9 in the Proceedings of the National Academy of Sciences.
Read the back of most shampoos and dishwashing detergents and you’ll find the word “surfactant” in the list of active ingredients. Surfactant molecules are tiny, yet they are the reason dish soap can attack an oily spot and shampoo can rid the scalp of grease. (more…)
Berkeley Lab bioscientists and their colleagues decipher a far-reaching problem in computer simulations
Because modern computers have to depict the real world with digital representations of numbers instead of physical analogues, to simulate the continuous passage of time they have to digitize time into small slices. This kind of simulation is essential in disciplines from medical and biological research, to new materials, to fundamental considerations of quantum mechanics, and the fact that it inevitably introduces errors is an ongoing problem for scientists.
Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now identified and characterized the source of tenacious errors and come up with a way to separate the realistic aspects of a simulation from the artifacts of the computer method. The research was done by David Sivak and his advisor Gavin Crooks in Berkeley Lab’s Physical Biosciences Division and John Chodera, a colleague at the California Institute of Quantitative Biosciences (QB3) at the University of California at Berkeley. The three report their results in Physical Review X. (more…)
ANN ARBOR— A dollop of hair gel might not look like much, but Michigan Engineering researchers have found that it’s a labyrinth of chambers and domes, constructed by the particles inside. These structures allow the gel to hold its shape and determine how much pressure it can withstand before it starts to flow.
While manufacturers currently use trial and error to develop gels with a particular degree of solidity, this discovery could provide a way to design gels for particular applications. (more…)
A third of Earth’s organisms live in rocks and sediments, but their lives have been a mystery
By some estimates, a third of Earth’s organisms live in our planet’s rocks and sediments, yet their lives are almost a complete mystery.
This week, the work of microbiologist James Holden of the University of Massachusetts-Amherst and colleagues shines a light into this dark world.
In the journal Proceedings of the National Academy of Sciences (PNAS), they report the first detailed data on methane-exhaling microbes that live deep in the cracks of hot undersea volcanoes. (more…)
‘Greener’ and more engaging experiments draw students in
As a college student, Michelle Driessen had an all-too-typical experience.
“I hated general chemistry,” she says. “I thought it was terribly boring.”
She had plenty of company. Experiments were all laid out in advance, and the goal seemed to be to get to a predetermined result without blowing up the glassware.
In the old days, “very few students appreciated the point of most general chemistry labs,” adds Driessen. “With cookbook chemistry, you couldn’t have anything go wrong or deviate [from what’s supposed to happen], but I find those things to be the most interesting part of science.” (more…)
A new study provides a composite picture of the environmental distribution of oil and gas from the 2010 Deepwater Horizon spill in the Gulf of Mexico. It amasses a vast collection of available atmospheric, surface and subsurface chemical data to assemble a “mass balance” of how much oil and gas was released, where it went and the chemical makeup of the compounds that remained in the air, on the surface, and in the deep water.
The study, “Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution,” is published online in the journal Proceedings of the National Academy of SciencesUSA. (more…)