ANN ARBOR — A new paper from scientists in North America, Europe and China reveals important details about key transitions in the evolution of plant life on our planet.
From strange and exotic algae, mosses, ferns, trees and flowers growing deep in steamy rain forests to the grains and vegetables we eat and the ornamental plants adorning our homes, all plant life on Earth shares more than a billion years of history. (more…)
New, free Web-based software described in the journal Bioinformatics analyzes DNA sequences to determine if mutations are likely to cause errors in splicing of messenger RNA. When gene splicing goes awry, a wide variety of diseases can result.
PROVIDENCE, R.I. [Brown University] — In a brief paper in the journal Bioinformatics, Brown University researchers describe a new, freely available Web-based program called Spliceman for predicting whether genetic mutations are likely to disrupt the splicing of messenger RNA, potentially leading to disease.
“Spliceman takes a set of DNA sequences with point mutations and computes how likely these single nucleotide variants alter splicing phenotypes,” write co-authors Kian Huat Lim, a graduate student, and William Fairbrother, assistant professor of biology, in an “application note” published in advance online Feb. 10. It will appear in print in April. (more…)
*The genomes of 17 common strains of lab mice were sequenced to advance genetic studies of human diseases*
Scientists have sequenced the genomes (genetic codes) of 17 strains of common lab mice–an achievement that lays the groundwork for the identification of genes responsible for important traits, including diseases that afflict both mice and humans.
Mice represent the premier genetic model system for studying human diseases. What’s more, the 17 strains of mice included in this study are the most common strains used in lab studies of human diseases. By enabling scientists to list all DNA differences between the 17 strains, the new genome sequences will speed the identification of subsets of mutations and genes that contribute to disease. (more…)
GAINESVILLE, Fla. — Rates of HIV have increased in Pakistan’s general population, as the virus has spread beyond at-risk groups to women and their children, according to an international team of researchers, including a University of Florida scientist.
The researchers raise concern that the transmission across subgroups into Pakistan’s general population may serve as indication that the virus may be spreading into populations within neighboring Afghanistan. The team’s epidemiological findings were published in July in the journal PLoS One. (more…)
*Berkeley Lab scientists decipher immune system for plants beneath our feet*
Those vegetables you had for dinner may have once been protected by an immune system akin to the one that helps you fight disease. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the Netherland’s Wageningen University found that plants rely on a complex community of soil microbes to defend themselves against pathogens, much the way mammals harbor a raft of microbes to avoid infections.
The scientists deciphered, for the first time, the group of microbes that enables a patch of soil to suppress a plant-killing pathogen. Previous research on the phenomenon of disease-suppressive soil had identified one or two pathogen-fighting microbes at work. (more…)