Category Archives: Science

How Computers Push on the Molecules They Simulate

Berkeley Lab bioscientists and their colleagues decipher a far-reaching problem in computer simulations

Because modern computers have to depict the real world with digital representations of numbers instead of physical analogues, to simulate the continuous passage of time they have to digitize time into small slices. This kind of simulation is essential in disciplines from medical and biological research, to new materials, to fundamental considerations of quantum mechanics, and the fact that it inevitably introduces errors is an ongoing problem for scientists.

Scientists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have now identified and characterized the source of tenacious errors and come up with a way to separate the realistic aspects of a simulation from the artifacts of the computer method. The research was done by David Sivak and his advisor Gavin Crooks in Berkeley Lab’s Physical Biosciences Division and John Chodera, a colleague at the California Institute of Quantitative Biosciences (QB3) at the University of California at Berkeley. The three report their results in Physical Review X. (more…)

Read More

Molecular Scientists Reveal Extraordinary Properties of Ordinary Glasses

Technologically valuable ultrastable glasses can be produced in days or hours with properties corresponding to those that have been aged for thousands of years, computational and laboratory studies have confirmed.

Aging makes for higher quality glassy materials because they have slowly evolved toward a more stable molecular condition. This evolution can take thousands or millions of years, but manufacturers must work faster. Armed with a better understanding of how glasses age and evolve, researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process. (more…)

Read More

Within ‘Habitable Zone,’ More Planets than We Knew

The number of known places in our galaxy theoretically hospitable to life may be significantly greater than previously thought, according to new research.

Researchers with Planet Hunters are reporting the discovery of a Jupiter-sized planet in the so-called “habitable zone” of a star similar to Earth’s sun, as well as the identification of 15 new candidate planets also orbiting within their star’s habitable zone. (more…)

Read More

Pronunciation of ‘s’ sounds impacts perception of gender, CU-Boulder researcher finds

A person’s style of speech — not just the pitch of his or her voice — may help determine whether the listener perceives the speaker to be male or female, according to a University of Colorado Boulder researcher who studied transgender people transitioning from female to male.

The way people pronounce their “s” sounds and the amount of resonance they use when speaking contributes to the perception of gender, according to Lal Zimman, whose findings are based on research he completed while earning his doctoral degree from CU-Boulder’s linguistics department. (more…)

Read More

Curiosity Rover Explores ‘Yellowknife Bay’

Mars Science Laboratory Mission Status Report

PASADENA, Calif. – After imaging during the holidays, NASA’s Mars rover Curiosity resumed driving Jan. 3 and pulled within arm’s reach of a sinuous rock feature called “Snake River.”

Snake River is a thin curving line of darker rock cutting through flatter rocks and jutting above sand. Curiosity’s science team plans to get a closer look at it before proceeding to other nearby rocks. (more…)

Read More

Testing Einstein’s E=mc2 in Outer Space

UA physicist Andrei Lebed has stirred the physics community with an intriguing idea yet to be tested experimentally: The world’s most iconic equation, Albert Einstein’s E=mc2, may be correct or not depending on where you are in space.

With the first explosions of atomic bombs, the world became witness to one of the most important and consequential principles in physics: Energy and mass, fundamentally speaking, are the same thing and can, in fact, be converted into each other.

This was first demonstrated by Albert Einstein’s Theory of Special Relativity and famously expressed in his iconic equation, E=mc2, where E stands for energy, m for mass and c for the speed of light (squared). (more…)

Read More