Category Archives: Science

Mine Landslide Triggered Quakes

Record-Breaking Slide Would Bury Central Park 66 Feet Deep

Last year’s gigantic landslide at a Utah copper mine probably was the biggest nonvolcanic slide in North America’s modern history, and included two rock avalanches that happened 90 minutes apart and surprisingly triggered 16 small earthquakes, University of Utah scientists discovered.

The landslide – which moved at an average of almost 70 mph and reached estimated speeds of at least 100 mph – left a deposit so large it “would cover New York’s Central Park with about 20 meters (66 feet) of debris,” the researchers report in the January 2014 cover study in the Geological Society of America magazine GSA Today. (more…)

Read More

White paper urges new approaches to assure access to scientific data

ANN ARBOR — A newly released white paper calls for new approaches for preserving scientific data and sustainable funding of domain repositories—data archives with ties to specific scientific communities.

“Sustaining Domain Repositories for Digital Data: A White Paper” is the result of a meeting last summer that brought together representatives of 22 data repositories serving the social, natural and physical sciences. The meeting at the University of Michigan was organized by the Inter-university Consortium for Political and Social Research, part of the U-M Institute for Social Research. (more…)

Read More

SOFS Take to Water

Researchers at Berkeley Lab’s Molecular Foundry Create First Soluble 2D Supramolecular Organic Frameworks

Supramolecular chemistry, aka chemistry beyond the molecule, in which molecules and molecular complexes are held together by non-covalent bonds, is just beginning to come into its own with the emergence of nanotechnology. Metal-organic frameworks (MOFs) are commanding much of the attention because of their appetite for greenhouse gases, but a new player has joined the field – supramolecular organic frameworks (SOFs). Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have unveiled the first two-dimensional SOFs that self-assemble in solution, an important breakthrough that holds implications for sensing and separation technologies, energy sciences, and, perhaps most importantly, biomimetics. (more…)

Read More

Decade-Old Rover Adventure Continues on Mars and Earth

Eighth graders didn’t have Facebook or Twitter to share news back then, in January 2004. Bekah Sosland, 14 at the time, learned about a NASA rover landing on Mars when the bouncing-ball video on the next morning’s Channel One news in her Fredericksburg, Texas, classroom caught her eye.

“I wasn’t particularly interested in space at the time,” she recalled last week inside the spacecraft operations facility where she now works at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “I remember I was talking with friends, and out of the corner of my eye I noticed this thing bouncing and rolling on a red surface. I watched as it stopped and opened up, and it had this rover inside.” (more…)

Read More

Berkeley Lab Researchers Create a Nonlinear Light-generating Zero-Index MetaMaterial

Holds Promise for Future Quantum Networks and Light Sources

The Information Age will get a major upgrade with the arrival of quantum processors many times faster and more powerful than today’s supercomputers. For the benefits of this new Information Age 2.0 to be fully realized, however, quantum computers will need fast and efficient multi-directional light sources. While quantum technologies remain grist for science fiction, a team of researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have taken an important step towards efficient light generation, the foundation for future quantum networks. (more…)

Read More

Researchers Find Simple, Cheap Way to Increase Solar Cell Efficiency

Researchers from North Carolina State University and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30 percent.

Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material. Excitons are the energy particles created by solar cells when light is absorbed. In order to be harnessed effectively as an energy source, excitons must be able to travel quickly to the interface of the donor and acceptor domains and retain as much of the light’s energy as possible. (more…)

Read More

UChicago researchers use Hubble Telescope to reveal cloudy weather on alien world

Weather forecasters on exoplanet GJ 1214b would have an easy job. Today’s forecast: cloudy. Tomorrow: overcast. Extended outlook: more clouds.

That’s the implication of a study led by researchers in the Department of Astronomy and Astrophysics at the University of Chicago who have definitively characterized the atmosphere of a super-Earth class planet orbiting another star for the first time. (more…)

Read More

Water in cells behaves in complex and intricate ways

ANN ARBOR — In a sort of biological “spooky action at a distance,” water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, University of Michigan researchers have discovered.

On a fundamental level, the findings show some of the complex and unexpected ways that water behaves inside cells. In a practical sense, they could provide insights into how and why proteins clump together in diseases such as Alzheimer’s and Parkinson’s. Understanding how proteins aggregate could help researchers figure out how to prevent them from doing so. (more…)

Read More