A new study has revealed that fungi, often seen as pests, play a crucial role policing biodiversity in rainforests.
The research, by scientists at Oxford University, the University of Exeter and Sheffield University, found that fungi regulate diversity in rainforests by making dominant species victims of their own success.
Fungi spread quickly between closely-packed plants of the same species, preventing them from dominating and enabling a wider range of species to flourish. (more…)
Environmental conditions have a much stronger influence on the mix of microbes living in various parts of your body than does competition between species. Instead of excluding each other, microbes that fiercely compete for similar resources are more likely to cohabit in the same individual.
This phenomenon was discovered in a recent study of the human microbiome – the vast collection of our resident bacteria, fungi, and other tiny organisms. (more…)
The deep biosphere—the realm of sediments far below the seafloor—harbors a vast ecosystem of bacteria, archaea, and fungi that are actively metabolizing, proliferating, and moving, according a new study by scientists at Woods Hole Oceanographic Institution (WHOI) and the University of Delaware (UD).
“This is the first molecular evidence for active cell division in the deep biosphere,” says WHOI postdoctoral investigator Bill Orsi, who was the lead author on the study. Previous studies and models had suggested cells were alive, but whether the cells were actually dividing or not had remained elusive. (more…)
Active microbes discovered far beneath seafloor in ancient ocean sediment
Microbes are living more than 500 feet beneath the seafloor in 5 million-year-old sediment, according to new findings by researchers at the University of Delaware and Woods Hole Oceanographic Institution (WHOI).
Genetic material in mud from the bottom of the ocean — called the deep biosphere —revealed an ecosystem of active bacteria, fungi and other microscopic organisms at depths deeper than a skyscraper is high. The findings were published in Nature on June 12. (more…)
New research shows fungi living beneath the seafloor are widespread
Fungi living beneath the seafloor are widespread in ocean environments around the world, according to a new paper by scientists at the University of Delaware and Woods Hole Oceanographic Institution.
Some arid lands in the American West degraded by military exercises that date back to General George Patton’s Word War II maneuvers in the Mojave Desert should get a boost from an innovative research project led by the University of Colorado Boulder.
Headed up by CU-Boulder Assistant Professor Nichole Barger, the research team is focused on developing methods to restore biological soil crusts — microbial communities primarily concentrated on soil surfaces critical to decreasing erosion and increasing water retention and soil fertility. Such biological soil crusts, known as “biocrusts,” can cover up to 70 percent of the ground in some arid ecosystems and are dominated by cyanobacteria, lichens, mosses, fungi and bacteria, she said. (more…)
Answer may be ‘adaptive zones’ that limit species number, life scientists report
There are more than 400,000 species of beetles and only two species of the tuatara, a reptile cousin of snakes and lizards that lives in New Zealand. Crocodiles and alligators, while nearly 250 million years old, have diversified into only 23 species. Why evolution has produced “winners” — including mammals and many species of birds and fish — and “losers” is a major question in evolutionary biology.
Scientists have often posited that because some animal and plant lineages are much older than others, they have had more time to produce new species (the dearth of crocodiles notwithstanding). This idea — that time is an important predictor of species number — underlies many theoretical models used by biologists. However, it fails to explain species numbers across all multi-cellular life on the planet, a team of life scientists reports Aug. 28 in the online journal PLoS Biology, a publication of the Public Library of Science. (more…)
ANN ARBOR, Mich.— Loss of biodiversity appears to impact ecosystems as much as climate change, pollution and other major forms of environmental stress, according to a new study from an international research team.
The study is the first comprehensive effort to directly compare the impacts of biological diversity loss to the anticipated effects of a host of other human-caused environmental changes.
The results highlight the need for stronger local, national and international efforts to protect biodiversity and the benefits it provides, according to the researchers, who are based at nine institutions in the United States, Canada and Sweden. (more…)