PASADENA, Calif. – A distant world gleaming in sunlight, Earth’s twin planet, Venus, shines like a bright beacon in images taken by NASA’s Cassini spacecraft in orbit around Saturn.
One special image of Venus and Saturn was taken last November when Cassini was placed in the shadow of Saturn. This allowed Cassini to look in the direction of the sun and Venus, and take a backlit image of Saturn and its rings in a particular viewing geometry called “high solar phase.” This observing position reveals details about the rings and Saturn’s atmosphere that cannot be seen in lower solar phase. (more…)
A team led by the University of Colorado Boulder looking for clues about why Earth did not warm as much as scientists expected between 2000 and 2010 now thinks the culprits are hiding in plain sight — dozens of volcanoes spewing sulfur dioxide.
The study results essentially exonerate Asia, including India and China, two countries that are estimated to have increased their industrial sulfur dioxide emissions by about 60 percent from 2000 to 2010 through coal burning, said lead study author Ryan Neely, who led the research as part of his CU-Boulder doctoral thesis. Small amounts of sulfur dioxide emissions from Earth’s surface eventually rise 12 to 20 miles into the stratospheric aerosol layer of the atmosphere, where chemical reactions create sulfuric acid and water particles that reflect sunlight back to space, cooling the planet. (more…)
Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes
From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.
Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)
AUSTIN, Texas — Researchers from Amherst College and The University of Texas at Austin have described a new technique that might one day reveal in higher detail than ever before the composition and characteristics of the deep Earth.
There’s just one catch: The technique relies on a fifth force of nature (in addition to gravity, the weak and strong nuclear forces and electromagnetism) that has not yet been detected, but which some particle physicists think might exist. Physicists call this type of force a long-range spin-spin interaction. If it does exist, this exotic new force would connect matter at Earth’s surface with matter hundreds or even thousands of kilometers below, deep in Earth’s mantle. In other words, the building blocks of atoms—electrons, protons, and neutrons—separated over vast distances would “feel” each other’s presence. The way these particles interact could provide new information about the composition and characteristics of the mantle, which is poorly understood because of its inaccessibility. (more…)
BOSTON — An Ohio State University statistician says that the natural human difficulty with grasping probabilities is preventing Americans from dealing with climate change.
An initial sequence of radar images of asteroid 2012 DA14 was obtained on the night of Feb. 15/16, 2013, by NASA scientists using the 230-foot (70-meter) Deep Space Network antenna at Goldstone, Calif. Each of the 72 frames required 320 seconds of data collection by the Goldstone radar.
The observations were made as the asteroid was moving away from Earth. The asteroid’s distance from the radar dish increased from 74,000 miles (120,000 kilometers) to 195,000 miles (314,000 kilometers). The resolution is 13 feet (four meters) per pixel. The images span close to eight hours and clearly show an elongated object undergoing roughly one full rotation. The images suggest that the asteroid has a long axis of about 130 feet (40 meters). The radar observations were led by scientists Lance Benner and Marina Brozovic of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. Additional Goldstone radar observations are scheduled on February 18, 19 and 20. (more…)
The UA’s Chris Impey has taught cosmology to Tibetan Buddhist monastics in remote parts of India each summer for the past five years. With a grant from the John Templeton Foundation, he detailed his experiences in a book, “Humble Before the Void,” which likely will publish in 2014.
Chris Impey thinks back to the time he spent living on the edge of Tibetan Buddhist monasteries, teaching modern cosmology to Buddhist monastics in India: “On a typical day, they would be up at 5 a.m. and have prayed for a few hours or done meditation before you even see them. And their attention is just as good at the end of a long day as at the beginning.” (more…)
New information provided by a worldwide network of sensors has allowed scientists to refine their estimates for the size of the object that entered that atmosphere and disintegrated in the skies over Chelyabinsk, Russia, at 7:20:26 p.m. PST, or 10:20:26 p.m. EST on Feb. 14 (3:20:26 UTC on Feb. 15).
The estimated size of the object, prior to entering Earth’s atmosphere, has been revised upward from 49 feet (15 meters) to 55 feet (17 meters), and its estimated mass has increased from 7,000 to 10,000 tons. Also, the estimate for energy released during the event has increased by 30 kilotons to nearly 500 kilotons of energy released. These new estimates were generated using new data that had been collected by five additional infrasound stations located around the world – the first recording of the event being in Alaska, over 6,500 kilometers away from Chelyabinsk. The infrasound data indicates that the event, from atmospheric entry to the meteor’s airborne disintegration took 32.5 seconds. The calculations using the infrasound data were performed by Peter Brown at the University of Western Ontario, Canada. (more…)