Tag Archives: analytical method

New Research Will Help Shed Light on Role of Amazon Forests in Global Carbon Cycle

Berkeley Lab scientists devise new tools for detecting previously unknown tree mortality.

The Earth’s forests perform a well-known service to the planet, absorbing a great deal of the carbon dioxide pollution emitted into the atmosphere from human activities. But when trees are killed by natural disturbances, such as fire, drought or wind, their decay also releases carbon back into the atmosphere, making it critical to quantify tree mortality in order to understand the role of forests in the global climate system. Tropical old-growth forests may play a large role in this absorption service, yet tree mortality patterns for these forests are not well understood.

Now scientist Jeffrey Chambers and colleagues at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have devised an analytical method that combines satellite images, simulation modeling and painstaking fieldwork to help researchers detect forest mortality patterns and trends. This new tool will enhance understanding of the role of forests in carbon sequestration and the impact of climate change on such disturbances. (more…)

Read More

The Genographic Project Confirms Humans Migrated Out of Africa through Arabia

*New analytical method approaches the unstudied 99% of the human genome*

WASHINGTON, D.C., – 02 Nov 2011: Evolutionary history shows that human populations likely originated in Africa, and the Genographic Project, the most extensive survey of human population genetic data to date, suggests where they went next. A study by the Project finds that modern humans migrated out of Africa via a southern route through Arabia, rather than a northern route by way of Egypt. These findings will be highlighted today at a conference at the National Geographic Society.

National Geographic and IBM’s Genographic Project scientific consortium have developed a new analytical method that traces the relationship between genetic sequences from patterns of recombination – the process by which molecules of DNA are broken up and recombine to form new pairs. Ninety-nine percent of the human genome goes through this shuffling process as DNA is being transmitted from one generation to the next. These genomic regions have been largely unexplored to understand the history of human migration. (more…)

Read More