BOSTON — An Ohio State University statistician says that the natural human difficulty with grasping probabilities is preventing Americans from dealing with climate change.
An initial sequence of radar images of asteroid 2012 DA14 was obtained on the night of Feb. 15/16, 2013, by NASA scientists using the 230-foot (70-meter) Deep Space Network antenna at Goldstone, Calif. Each of the 72 frames required 320 seconds of data collection by the Goldstone radar.
The observations were made as the asteroid was moving away from Earth. The asteroid’s distance from the radar dish increased from 74,000 miles (120,000 kilometers) to 195,000 miles (314,000 kilometers). The resolution is 13 feet (four meters) per pixel. The images span close to eight hours and clearly show an elongated object undergoing roughly one full rotation. The images suggest that the asteroid has a long axis of about 130 feet (40 meters). The radar observations were led by scientists Lance Benner and Marina Brozovic of NASA’s Jet Propulsion Laboratory, Pasadena, Calif. Additional Goldstone radar observations are scheduled on February 18, 19 and 20. (more…)
New information provided by a worldwide network of sensors has allowed scientists to refine their estimates for the size of the object that entered that atmosphere and disintegrated in the skies over Chelyabinsk, Russia, at 7:20:26 p.m. PST, or 10:20:26 p.m. EST on Feb. 14 (3:20:26 UTC on Feb. 15).
The estimated size of the object, prior to entering Earth’s atmosphere, has been revised upward from 49 feet (15 meters) to 55 feet (17 meters), and its estimated mass has increased from 7,000 to 10,000 tons. Also, the estimate for energy released during the event has increased by 30 kilotons to nearly 500 kilotons of energy released. These new estimates were generated using new data that had been collected by five additional infrasound stations located around the world – the first recording of the event being in Alaska, over 6,500 kilometers away from Chelyabinsk. The infrasound data indicates that the event, from atmospheric entry to the meteor’s airborne disintegration took 32.5 seconds. The calculations using the infrasound data were performed by Peter Brown at the University of Western Ontario, Canada. (more…)
On Mars, as on Earth, sometimes things can take on an unusual appearance. A case in point is a shiny-looking rock seen in a recent image from NASA’s Curiosity Mars rover.
Some casual observers might see a resemblance to a car door handle, hood ornament or some other type of metallic object. To Ronald Sletten of the University of Washington, Seattle, a collaborator on Curiosity’s science team, the object is an interesting study in how wind and the natural elements cause erosion and other effects on various types of rocks. (more…)
Scientists build new ‘tree of life’ for placentals, visualize common ancestor
Scientists have reconstructed the common ancestor of placental mammals–an extremely diverse group including animals ranging from rodents to whales to humans–using the world’s largest dataset of both genetic and physical traits. (more…)
Microbe-eating flies from at least three different locations around the world recently have evolved into herbivores, feeding on some of the most toxic plants on Earth. Fly detectives and UA evolutionary biologists Noah Whiteman and Richard Lapoint are trying to find out what genetic pathways led the flies to such a major change of lifestyle.
For millennia, they buzzed through the woods, contentedly munching yeasts off the surfaces of leaves, bracken and rotting duff on the forest floor. But now, flies in the family Drosophilidae, whose disparate members dwell in areas all across the planet, have evolved into all-out vegetarians with a wicked diet of plants that are deadly to most other organisms.
What, University of Arizona scientists would like to know, has caused these flies, yeast-feeders for nearly 80 million years, to independently go cold turkey with respect to their formerly meaty diets? (more…)
Berkeley Lab scientists devise new tools for detecting previously unknown tree mortality.
The Earth’s forests perform a well-known service to the planet, absorbing a great deal of the carbon dioxide pollution emitted into the atmosphere from human activities. But when trees are killed by natural disturbances, such as fire, drought or wind, their decay also releases carbon back into the atmosphere, making it critical to quantify tree mortality in order to understand the role of forests in the global climate system. Tropical old-growth forests may play a large role in this absorption service, yet tree mortality patterns for these forests are not well understood.
Now scientist Jeffrey Chambers and colleagues at the U.S. Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have devised an analytical method that combines satellite images, simulation modeling and painstaking fieldwork to help researchers detect forest mortality patterns and trends. This new tool will enhance understanding of the role of forests in carbon sequestration and the impact of climate change on such disturbances. (more…)