A team led by UCLA research astronomer Michael Rich has used a unique telescope to discover a previously unknown companion to the nearby galaxy NGC 4449, which is some 12.5 million light years from Earth. The newly discovered dwarf galaxy had escaped even the prying eyes of the Hubble Space Telescope.
The research is published Feb. 9 in the journal Nature.(more…)
Astronomers at Yale University have discovered what appear to be three fast-growing supermassive black holes in a relatively young, still-forming galaxy.
The discovery raises the possibility that this type of black hole continues to form billions of years after the Big Bang, challenging current theory. Astronomers previously thought all supermassive black holes emerged soon after the birth of the universe 13.7 billion years ago. (more…)
*Berkeley Lab researchers are leaders in an international effort to close in on neutrino mass*
Some of the most intriguing questions in basic physics focus on neutrinos. How much do the different kinds weigh and which is the heaviest? The answers lie in how the three “flavors” of neutrinos – electron, muon, and tau neutrinos – oscillate or mix, changing from one to another as they race virtually without interruption through unbounded reaches of matter and space.
Three mathematical terms known as “mixing angles” described the process, and the Daya Bay Reactor Neutrino Experiment has just begun taking data to establish the last, least-known mixing angle to unprecedented precision. China and the United States lead the international Daya Bay Collaboration, including participants from Russia, the Czech Republic, Hong Kong, and Taiwan. U.S. participation is led by the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). (more…)
The theory that our universe is contained inside a bubble, and that multiple alternative universes exist inside their own bubbles – making up the ‘multiverse’ – is, for the first time, being tested by physicists.
Two research papers published in Physical Review Letters and Physical Review D are the first to detail how to search for signatures of other universes. Physicists are now searching for disk-like patterns in the cosmic microwave background (CMB) radiation – relic heat radiation left over from the Big Bang – which could provide tell-tale evidence of collisions between other universes and our own. (more…)
ANN ARBOR, Mich.— Using the deepest X-ray image ever taken, a University of Michigan astronomer and her colleagues have found the first direct evidence that massive black holes were common in the early universe. This discovery from NASA’s Chandra X-ray Observatory shows that very young black holes grew more aggressively than previously thought, in tandem with the growth of their host galaxies.
By pointing Chandra at a patch of sky for over six weeks, astronomers obtained what is known as the Chandra Deep Field South (CDFS). When combined with very deep optical and infrared images from NASA’s Hubble Space Telescope, the new Chandra data allowed astronomers to search for black holes in 200 distant galaxies, from when the universe was between about 800 million and 950 million years old. (more…)
*Our home galaxy belongs to a rare subset among the billions that populate the cosmos*
How unique is the Milky Way?
To find out, a group of researchers led by Stanford University astrophysicist Risa Wechsler compared the Milky Way to similar galaxies and found that just four percent are like the galaxy Earth calls home. (more…)
PASADENA, Calif. — A five-year survey of 200,000 galaxies, stretching back seven billion years in cosmic time, has led to one of the best independent confirmations that dark energy is driving our universe apart at accelerating speeds. The survey used data from NASA’s space-based Galaxy Evolution Explorer and the Anglo-Australian Telescope on Siding Spring Mountain in Australia.
The findings offer new support for the favored theory of how dark energy works — as a constant force, uniformly affecting the universe and propelling its runaway expansion. They contradict an alternate theory, where gravity, not dark energy, is the force pushing space apart. According to this alternate theory, with which the new survey results are not consistent, Albert Einstein’s concept of gravity is wrong, and gravity becomes repulsive instead of attractive when acting at great distances. (more…)
Nearly 14 billion years ago, the universe began with a bang — a big one.
Scientists believe that the universe and everything within it began as an extremely hot, dense “soup” that eventually gave rise to galaxies, stars, planets and life and that continues to expand to this day.
Now scientists around the world are pushing back the frontiers of our understanding about the moment the universe was born using the Large Hadron Collider (LHC), a giant particle accelerator at CERN (the European Organization for Nuclear Research) near Geneva, Switzerland. (more…)