Black holes aren’t surrounded by a burning ring of fire after all, suggests new research.
Some physicists have believed in a “firewall” around the perimeter of a black hole that would incinerate anything sucked into its powerful gravitational pull.(more…)
UChicago scientists: Results help unveil diversity of black holes in the universe
The Laser Interferometer Gravitational-Wave Observatory has made a third detection of gravitational waves, providing the latest confirmation that a new window in astronomy has opened. As was the case with the first two detections, the waves—ripples in spacetime—were generated when two black holes collided to form a larger black hole.(more…)
AUSTIN, Texas — Astronomers at The University of Texas at Austin and Harvard University have put a basic principle of black holes to the test, showing that matter completely vanishes when pulled in. Their results constitute another successful test for Albert Einstein’s General Theory of Relativity.(more…)
The announcement Feb. 11 of the detection of gravitational waves, predicted by Albert Einstein some 100 years ago, created a surge of excitement among physicists worldwide, including many with ties to Princeton University.(more…)
The universe’s oldest, brightest beacons may have gorged themselves in the dense, cold, gas flows of the early cosmos — creating a kind of energy drink for infant black holes in the young universe — according to new research by scientists at Yale University and the Weizmann Institute in Israel. (more…)
Quantum entanglement, a perplexing phenomenon of quantum mechanics that Albert Einstein once referred to as “spooky action at a distance,” could be even spookier than Einstein perceived.
Physicists at the University of Washington and Stony Brook University in New York believe the phenomenon might be intrinsically linked with wormholes, hypothetical features of space-time that in popular science fiction can provide a much-faster-than-light shortcut from one part of the universe to another. (more…)
COLLEGE PARK, Md. – Astrophysicists using a telescope embedded in Antarctic ice have succeeded in a quest to detect and record the mysterious phenomena known as cosmic neutrinos – nearly massless particles that stream to Earth at the speed of light from outside our solar system, striking the surface in a burst of energy that can be as powerful as a baseball pitcher’s fastball. Next, they hope to build on the early success of the IceCube Neutrino Observatory to detect the source of these high-energy particles, said Physics Professor Gregory Sullivan, who led the University of Maryland’s 12-person team of contributors to the IceCube Collaboration.
“The era of neutrino astronomy has begun,” Sullivan said as the IceCube Collaboration announced the observation of 28 very high-energy particle events that constitute the first solid evidence for astrophysical neutrinos from cosmic sources. (more…)
Black holes can be petite, with masses only about 10 times that of our sun — or monstrous, boasting the equivalent in mass up to 10 billion suns. Do black holes also come in size medium? NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, is busy scrutinizing a class of black holes that may fall into the proposed medium-sized category.
“Exactly how intermediate-sized black holes would form remains an open issue,” said Dominic Walton of the California Institute of Technology, Pasadena. “Some theories suggest they could form in rich, dense clusters of stars through repeated mergers, but there are a lot of questions left to be answered.” (more…)