Tag Archives: berkeley lab

Berkeley Lab Releases Most Comprehensive Databook on China’s Energy and Environment

In the five years since the China Energy Group of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) released its last edition of the China Energy Databook, China has achieved two dubious distinctions: it surpassed the United States in energy consumption and it surpassed the United States in energy-related emissions of carbon dioxide, becoming the world leader on both scores.

With these important shifts in the global energy landscape, the eighth edition of the China Energy Databook is being released this week. The Databook is the most comprehensive publicly available resource known to exist covering China’s energy and environmental statistics. The China Energy Group researchers have amassed an enormous trove of data from firsthand sources and organized much of it into a relational database, making it far more useful for research and analytical purposes. (more…)

Read More

Berkeley Lab Climate Scientists See Better Climate Models, Warmer Future

Berkeley Lab experts contribute to IPCC 5th Assessment Report.

Over the next century, most of the continents are on track to become considerably warmer, with more hot extremes and fewer cold extremes. Precipitation will increase in some parts of the world but will decrease in other parts. These are some of the conclusions reached by Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Michael Wehner and his co-authors on the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Wehner, a climate scientist in Berkeley Lab’s Computational Research Division, and William Collins, head of the Lab’s Climate Sciences Department, were lead authors on the IPCC report’s chapters on long-term climate change projections and climate models, respectively. They are among more than 200 lead authors from more than 30 countries in IPCC’s Working Group I. Their report released today provides a comprehensive assessment of the physical science basis of climate change. (more…)

Read More

Hydrogen Fuel from Sunlight

Berkeley Lab Researchers at Joint Center for Artificial Photosynthesis Make Unique Semiconductor/Catalyst Construct

In the search for clean, green sustainable energy sources to meet human needs for generations to come, perhaps no technology matches the ultimate potential of artificial photosynthesis. Bionic leaves that could produce energy-dense fuels from nothing more than sunlight, water and atmosphere-warming carbon dioxide, with no byproducts other than oxygen, represent an ideal alternative to fossil fuels but also pose numerous scientific challenges. A major step toward meeting at least one of these challenges has been achieved by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) working at the Joint Center for Artificial Photosynthesis (JCAP).

“We’ve developed a method by which molecular hydrogen-producing catalysts can be interfaced with a semiconductor that absorbs visible light,” says Gary Moore, a chemist with Berkeley Lab’s Physical Biosciences Division and principal investigator for JCAP. “Our experimental results indicate that the catalyst and the light-absorber are interfaced structurally as well as functionally.” (more…)

Read More

From Mentee to Mentor, Berkeley Lab’s Education Programs Inspire Scientists

Question: “What did you do this summer?” Answer: “I built the Advanced Light Source.”

It’s the rare undergraduate who can say they spent their vacation building a third-generation synchrotron, but that’s exactly what Seno Rekawa did in the summer of 1991 as an intern at Lawrence Berkeley National Laboratory. It was an auspicious start to his career. Less than five years later, he was working as a full-time engineer at Berkeley Lab and now is a regular mentor to budding high school and college engineers.

Berkeley Lab’s Center for Science and Engineering Education (CSEE), with its range of internship offerings, helps to fulfill one of the Lab’s mandates, which is to inspire and prepare this country’s next generation of scientists, engineers and technicians. This year more than 70 current and recent college students and almost 20 high school and college instructors participated in a CSEE program, working with Berkeley Lab researchers on science projects spanning from cancer research to cosmology to biofuels. (more…)

Read More

Successful Test of New U.S. Magnet Puts Large Hadron Collider on Track for Major Upgrade

U.S. Department of Energy national laboratories – including Berkeley Lab – collaborate to build the new magnets CERN needs to increase LHC luminosity by an order of magnitude

The U.S. LHC Accelerator Program (LARP) has successfully tested a powerful superconducting quadrupole magnet that will play a key role in developing a new beam focusing system for CERN’s Large Hadron Collider (LHC). This advanced system, together with other major upgrades to be implemented over the next decade, will allow the LHC to produce 10 times more high-energy collisions than it was originally designed for.

Dubbed HQ02a, the latest in LARP’s series of High-Field Quadrupole magnets is wound with cables of the brittle but high-performance superconductor niobium tin (Nb3Sn). Compared to the final-focus quadrupoles presently in place at the LHC, which are made with niobium titanium, HQ02a has a larger aperture and superconducting coils designed to operate at a higher magnetic field. In a recent test at the Fermi National Accelerator Laboratory (Fermilab), HQ02a achieved all its challenging objectives. (more…)

Read More

Unusual Supernova is Doubly Unusual for Being Perfectly Normal

From the “Backyard Supernova,” the Berkeley Lab-led Nearby Supernova Factory has built a benchmark atlas for normal Type Ia’s

August, 2011, saw the dazzling appearance of the closest and brightest Type Ia supernova since Type Ia’s were established as “standard candles” for measuring the expansion of the universe. The brilliant visitor, labeled SN 2011fe, was caught by the Palomar Transient Factory less than 12 hours after it exploded in the Pinwheel Galaxy in the Big Dipper.

Easy to see through binoculars, 2011fe was soon dubbed the Backyard Supernova. Major astronomical studies from the ground and from space followed close on its heels, recording its luminosity and colors as it rapidly brightened and then slowly faded away. (more…)

Read More

Testing Artificial Photosynthesis

Berkeley Lab Researchers Develop Fully Integrated Microfluidic Test-bed for Solar-driven Electrochemical Energy Conversion Systems

With the daily mean concentrations of atmospheric carbon dioxide having reached 400 parts-per-million for the first time in human history, the need for carbon-neutral alternatives to fossil fuel energy has never been more compelling. With enough energy in one hour’s worth of global sunlight to meet all human needs for a year, solar technologies are an ideal solution. However, a major challenge is to develop efficient ways to convert solar energy into electrochemical energy on a massive-scale. A key to meeting this challenge may lie in the ability to test such energy conversion schemes on the micro-scale.

Berkeley Lab researchers, working at the Joint Center for Artificial Photosynthesis (JCAP), have developed the first fully integrated microfluidic test-bed for evaluating and optimizing solar-driven electrochemical energy conversion systems. This test-bed system has already been used to study schemes for photovoltaic electrolysis of water, and can be readily adapted to study proposed artificial photosynthesis and fuel cell technologies. (more…)

Read More

Whirlpools on the Nanoscale Could Multiply Magnetic Memory

At the Advanced Light Source, Berkeley Lab scientists join an international team to control spin orientation in magnetic nanodisks

“We spent 15 percent of home energy on gadgets in 2009, and we’re buying more gadgets all the time,” says Peter Fischer of the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab). Fischer lets you know right away that while it’s scientific curiosity that inspires his research at the Lab’s Advanced Light Source (ALS), he intends it to help solve pressing problems.

“What we’re working on now could make these gadgets perform hundreds of times better and also be a hundred times more energy efficient,” says Fischer, a staff scientist in the Materials Sciences Division. As a principal investigator at the Center for X-Ray Optics, he leads ALS beamline 6.1.2, where he specializes in studies of magnetism. (more…)

Read More