Category Archives: Science

Rare Earth Elements in U.S. Not So Rare

*Significant Deposits Found in 14 States*

Rare Earth Elements. Image credit: USGS

Approximately 13 million metric tons of rare earth elements (REE) exist within known deposits in the United States, according to the first-ever nationwide estimate of these elements by the U.S. Geological Survey.

This estimate of domestic rare earth deposits is part of a larger report that includes a review of global sources for REE, information on known deposits that might provide domestic sources of REE in the future, and geologic information crucial for studies of the availability of REE to U.S. industry.

The report describes significant deposits of REE in 14 states, with the largest known REE deposits at Mountain Pass, Calif.; Bokan Mountain, Alaska; and the Bear Lodge Mountains, Wyo. The Mountain Pass mine produced REE until it closed in 2002. Additional states with known REE deposits include Colorado, Florida, Georgia, Idaho, Illinois, Missouri, Nebraska, New Mexico, New York, North Carolina, and South Carolina. (more…)

Read More

Tropical Forest Diversity Increased During Ancient Global Warming Event

The steamiest places on the planet are getting warmer. Conservative estimates suggest that tropical areas can expect temperature increases of 3 degrees Celsius by the end of this century. Does global warming spell doom for rainforests? Maybe not. Carlos Jaramillo, staff scientist at the Smithsonian Tropical Research Institute, and colleagues report in the journal Science that nearly 60 million years ago rainforests prospered at temperatures that were 3-5 degrees higher and at atmospheric carbon dioxide levels 2.5 times today’s levels.

About the image: This is a scanning electron microscopy image of characteristic angiosperm pollen taxa from the Paleocene-Eocene Thermal Maximum. Image credit: Francy Carvajal, Smithsonian Tropical Research Institute (more…)

Read More

Change in Temperature Uncovers Genetic Cross Talk in Plant Immunity

*University of Missouri investigators’ discovery sheds light on how plants fight off bacterial infections*

Columbia, MO — Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant’s disease resistance strategy. Researchers at the University of Missouri recently “tapped” into two proteins’ communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for boosting a plant’s immune system.

Special proteins in the plant, called resistance proteins, can recognize highly specific features of proteins from pathogen, called effector proteins. When a pathogen is detected, a resistance protein triggers an “alarm” that communicates the danger to the cell’s nucleus. The communication between the resistance protein and nucleus occurs through a mechanism called a signaling pathway. (more…)

Read More

‘Novel Ocean-Crust Mechanism Could Affect World’s Carbon Budget’

The Earth is constantly manufacturing new crust, spewing molten magma up along undersea ridges at the boundaries of tectonic plates. The process is critical to the planet’s metabolism, including the cycle of underwater life and the delicate balance of carbon in the ocean and atmosphere. 

Now, scientists at the Woods Hole Oceanographic Institution (WHOI) have observed ocean crust forming in an entirely unexpected way—one that may influence those cycles of life and carbon and, in turn, affect the much-discussed future of the world’s climate. 

Working at the Guaymas basin in the Gulf of California, WHOI scientists confirmed what they suspected from brief glimpses of the area during previous missions: The inner Earth is injecting swaths of magma called sills as far as 50 kilometers away from the plate boundary, on each side of the ridge —nearly 10 times farther from such an active ocean ridge than had been observed before.  (more…)

Read More

UCLA Researchers Identify Molecular Program for Brain Repair Following Stroke

Mouse Stroke. An MRI of a mouse brain after stroke. The mouse section has been stained to show cell bodies. Image credit: University of California

A stroke wreaks havoc in the brain, destroying its cells and the connections between them. Depending on its severity and location, a stroke can impact someone’s life forever, affecting motor activity, speech, memories, and more. 

The brain makes an attempt to rally by itself, sprouting a few new connections, called axons, that reconnect some areas of the brain. But the process is weak, and the older the brain, the poorer the repair. Still, understanding the cascade of molecular events that drive even this weak attempt could lead to developing drugs to boost and accelerate this healing process. 

Now researchers at UCLA have achieved a promising first step. Reporting in the current online edition of the journal Nature Neuroscience, senior author Dr. S. Thomas Carmichael, a UCLA associate professor of neurology, and colleagues have, for the first time, identified in the mouse the molecular cascade that drives the process of reconnection or sprouting in the adult brain after stroke.  (more…)

Read More

Stem Cell Transplants in Mice Produce Lifelong Enhancement of Muscle Mass

A University of Colorado at Boulder-led study shows that specific types of stem cells transplanted into the leg muscles of mice prevented the loss of muscle function and mass that normally occurs with aging, a finding with potential uses in treating humans with chronic, degenerative muscle diseases.

The experiments showed that when young host mice with limb muscle injuries were injected with muscle stem cells from young donor mice, the cells not only repaired the injury within days, they caused the treated muscle to double in mass and sustain itself through the lifetime of the transplanted mice. “This was a very exciting and unexpected result,” said Professor Bradley Olwin of CU-Boulder’s molecular, cellular and developmental biology department, the study’s corresponding author. (more…)

Read More

Depression Linked to Altered Activity of Circadian Rhythm Gene

COLUMBUS, Ohio – Depression appears to be associated with a molecular-level disturbance in the body’s 24-hour clock, new research suggests. 

Scientists examined genes that regulate circadian rhythm in people with and without a history of depression. As a group, those with a history of depression had a higher level of activity of the so-called Clock gene, which has a role in regulating circadian rhythm, than did people with no mood disorders.

Higher expression levels of this gene suggest something is amiss in the body’s 24-hour biological and behavioral cycle, which could affect sleep patterns and other physiological functions governed by circadian rhythm. Sleep disturbance is a common symptom of depression.  (more…)

Read More

Primordial Dry Ice Fuels Comet Jets

Initial science results on comet released from University of Maryland, much more to come UMD scientists say

Jets Galore. This enhanced image, one of the closest taken of comet Hartley 2. Image credit: University of Maryland

COLLEGE PARK, Md. – One of the biggest comet findings coming out of the amazing images and data taken by the University of Maryland-led EPOXI mission as it zipped past comet Hartley 2 last week is that dry ice is the ‘jet’ fuel for this comet and perhaps many others. 

Images from the flyby show spectacular jets of gas and particles bursting from many distinct spots on the surface of the comet. This is the first time images of a comet have been sharp enough to allow scientists to link jets of dust and gas with specific surface features. Analysis of the spectral signatures of the materials coming from the jets shows primarily CO2 gas (carbon dioxide) and particles of dust and ice.  (more…)

Read More