Floods didn’t make floodplains fertile during the dawn of human agriculture in the Earth’s far north because the waters were virtually devoid of nitrogen, unlike other areas of the globe scientists have studied.(more…)
Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes
From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.
Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)
Some arid lands in the American West degraded by military exercises that date back to General George Patton’s Word War II maneuvers in the Mojave Desert should get a boost from an innovative research project led by the University of Colorado Boulder.
Headed up by CU-Boulder Assistant Professor Nichole Barger, the research team is focused on developing methods to restore biological soil crusts — microbial communities primarily concentrated on soil surfaces critical to decreasing erosion and increasing water retention and soil fertility. Such biological soil crusts, known as “biocrusts,” can cover up to 70 percent of the ground in some arid ecosystems and are dominated by cyanobacteria, lichens, mosses, fungi and bacteria, she said. (more…)
COLUMBUS, Ohio – Scientists have designed a screening tool that provides a fast, easy and relatively inexpensive way to predict levels of a specific toxin in lakes that are prone to blue-green algal blooms.
Blue-green algae is not your average pond scum – rather than consisting of plant-like organisms, blue-green algae actually are cyanobacteria, and some species are linked to the production and release of the toxin microcystin into the water. Human exposure to the toxin through drinking or recreational water contact can threaten public health by causing liver damage, neurological problems and gastrointestinal illness in humans. (more…)
Stanford, CA— The major difference between plant and animal cells is the photosynthetic process, which converts light energy into chemical energy. When light isn’t available, energy is generated by breaking down carbohydrates and sugars, just as it is in animal and some bacterial cells. Two cellular organelles are responsible for these two processes: the chloroplasts for photosynthesis and the mitochondria for sugar breakdown. New research from Carnegie’s Eva Nowack and Arthur Grossman has opened a window into the early stages of chloroplast evolution. Their work is published online by the Proceedings of the National Academy of Sciences in the week of February 27-March 2. (more…)
*ARPA-E funded project aims to produce fuel molecules in plant leaves*
Mention biofuels and most people think of corn ethanol. Some may think of advanced biofuels from switchgrass or miscanthus. But tobacco? Not likely.
That could change. A team of scientists led by a researcher from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) is exploring a way to produce gasoline, diesel, and jet fuel from the iconic plant of the South. (more…)
MOAB, Utah — Drier conditions projected to result from climate change in the Southwest will likely reduce perennial vegetation cover and result in increased dust storm activity in the future, according to a new study by scientists with the U.S. Geological Survey and the University of California, Los Angeles.
The research team examined climate, vegetation and soil measurements collected over a 20-year period in Arches and Canyonlands National Parks in southeastern Utah. Long-term data indicated that perennial vegetation in grasslands and some shrublands declined with temperature increases. The study then used these soil and vegetation measurements in a model to project future wind erosion. (more…)
In the vast ocean where an essential nutrient—iron—is scarce, a marine bacterium that launches the ocean food web survives by using a remarkable biochemical trick: It recycles iron.
By day, it uses iron in enzymes for photosynthesis to make carbohydrates; then by night, it appears to reuse the same iron in different enzymes to produce organic nitrogen for proteins. (more…)