ANN ARBOR, Mich.— More young adults today would rather hit the information highway than the open highway, say University of Michigan researchers.
In a new study in the journal Traffic Injury Prevention, Michael Sivak and Brandon Schoettle of the U-M Transportation Research Institute found that having a higher proportion of Internet users was associated with lower licensure rates among young persons.
And this is just not in the United States; it’s happening in other countries, too. (more…)
The meal is pushed way, untouched. Loss of appetite can be a fleeting queasiness or continue to the point of emaciation. While it’s felt in the gut, more is going on inside the head.
New findings are emerging about brain and body messaging pathways that lead to loss of appetite, and the systems in place to avoid starvation. (more…)
ANN ARBOR, Mich.— Imagine two tango dancers sweeping across the dance floor and suddenly encountering a slick spot. To avoid a slip or even a nasty tumble, the pair must work together to support one another and glide safely through the stressful moment.
In a similar way, a certain type of helper protein called a stress-specific molecular chaperone prevents its client proteins from collapsing during stressful situations by uncoiling a long, supportive arm that wraps around them, a University of Michigan-led research team has shown. (more…)
Most of us know what it means when it’s said that someone is depressed. But commonly, true clinical depression brings with it a number of other symptoms. These can include anxiety, poor attention and concentration, memory issues, and sleep disturbances.
Traditionally, depression researchers have sought to identify the individual brain areas responsible for causing these symptoms. But the combination of so many symptoms suggested to UCLA researchers that the multiple symptoms of depression may be linked to a malfunction involving brain networks — the connections that link different brain regions. (more…)
*As they try to find the best reward among options, some people explore based on how uncertain they are about the outcome of the options. Those who employ that thought process, unlike people who use other strategies, uniquely harness the computational power of the rostrolateral prefrontal cortex, a new study finds.*
PROVIDENCE, R.I. [Brown University] — Life shrouds most choices in mystery. Some people inch toward a comfortable enough spot and stick close to that rewarding status quo. Out to dinner, they order the usual. Others consider their options systematically or randomly. But many choose to grapple with the uncertainty head on. “Explorers” order the special because they aren’t sure they’ll like it. It’s a strategy of maximizing rewards by discovering whether as yet unexplored options might yield better returns. In a new study, Brown University researchers show that such explorers use a specific part of their brain to calculate the relative uncertainty of their choices, while non-explorers do not. (more…)
In a study that holds major implications for breast cancer research as well as basic cell biology, scientists with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have discovered a rotational motion that plays a critical role in the ability of breast cells to form the spherical structures in the mammary gland known as acini. This rotation, which the researchers call “CAMo,” for coherent angular motion, is necessary for the cells to form spheres. Without CAMo, the cells do not form spheres, which can lead to random motion, loss of structure and malignancy.
”What is most exciting to me about this stunning discovery is that it may finally give us a handle by which to discover the physical laws of cellular motion as they apply to biology,” says Mina Bissell, a leading authority on breast cancer and Distinguished Scientist with Berkeley Lab’s Life Sciences Division. (more…)
New research by a team from the Universities of Glasgow and Exeter shows that a good indicator of how long individuals will live can be obtained from early in life using the length of specialised pieces of DNA called telomeres.
Telomeres occur at the ends of the chromosomes, which contain our genetic code.
They function a bit like the plastic caps at the end of shoelaces by marking the chromosome ends and protecting them from various process that gradually cause the ends to be worn away. This method of DNA protection is the same for most animals and plants, including humans, and the eventual loss of the telomere cap is known to cause cells to malfunction. This study is the first in which telomere length has been measured repeatedly from early in life of an individual and then for the rest of their natural lives. The results show that telomere length in early life is strongly predictive of lifespan. (more…)
Suppressing a newly identified protein involved in regulating cell division could be a novel strategy for fighting certain cancers because it stops the malignant cells from dividing and causes them to die quickly, according to a study by researchers at UCLA’s Jonsson Comprehensive Cancer Center.
During the five-year study, designed to seek new targets for anti-cancer therapies, researchers discovered that depleting the protein, called STARD9, also helped the commonly used chemotherapy drug Taxol work more effectively against certain cancers. (more…)