Tag Archives: fruit fly

Insect Glands May Illuminate Human Fertilization Process

Baltimore, MD — Insect glands are responsible for producing a host of secretions that allow bees to sting and ants to lay down trails to and from their nests. New research from Carnegie scientists focuses on secretions from glands in the reproductive tract that help sperm survive and guide the sperm on the trip to fertilize an egg. The gene that controls the development of these glands in fruit flies provides important information about gland development in all insects, as well as potential clues to similar human reproductive glands. Their work is published this month in Current Biology.

When a female fruit fly receives sperm from a male fruit fly, lubricating secretions in her reproductive tract activate the sperm, store it, and guide it to fertilization. Without the aid of these secretions, sperm would not make it to the eggs. Carnegie’s Allan Spradling and Jianjun Sun demonstrated that the gene in charge of regulating the development of fruit fly secretion glands is called Hr39. It encodes a steroid receptor protein. (more…)

Read More

Locked RNA Editing Yields Odd Fly Behavior

At the level of proteins, organisms can adapt by editing their RNA — and an editor can even edit itself. Brown University scientists working with fruit flies found that “locking down” the self-editing process at two extremes created some strange behaviors. They also found that the process is significantly affected by temperature.

PROVIDENCE, R.I. [Brown University] — Because a function of RNA is to be translated as the genetic instructions for the protein-making machinery of cells, RNA editing is the body’s way of fine-tuning the proteins it produces, allowing us to adapt. The enzyme ADAR, which does this editing job in the nervous system of creatures ranging from mice to men, even edits itself. In a new study that examined the self-editing process and locked it down at two extremes in fruit flies, Brown University scientists found some surprising insights into how this “fine-tuning of the fine-tuner” happens, including bizarre behavioral effects that come about when the self-editor can’t edit. (more…)

Read More

Low Quality Genes May Cause Mutational Meltdown

Deficiencies compound over time, researchers say

Evolutionary biologists at the University of Toronto have found that individuals with low-quality genes may produce offspring with even more inferior chromosomes, possibly leading to the extinction of certain species over generations.

Their study, published in Proceedings of the National Academy of Sciences, predicts that organisms with such genetic deficiencies could experience an increased number of mutations in their DNA, relative to individuals with high-quality genes. The research was done on fruit flies whose simple system replicates aspects of biology in more complex systems, so the findings could have implications for humans. (more…)

Read More

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in The Fruit Fly

UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly. (more…)

Read More

A “Jumping Gene’s” Preferred Targets May Influence Genome Evolution

Baltimore, MD — The human genome shares several peculiarities with the DNA of just about every other plant and animal. Our genetic blueprint contains numerous entities known as transposons, or “jumping genes,” which have the ability to move from place to place on the chromosomes within a cell.

An astounding 50% of human DNA comprises both active transposon elements and the decaying remains of former transposons that were active thousands to millions of years ago before becoming damaged and immobile. If all of this mobile and formerly mobile DNA were not mysterious enough, every time a plant, animal or human cell prepares to divide, the chromosome regions richest in transposon-derived sequences, even elements long deceased, are among the last to duplicate. The reason for their delayed duplication, if there is one, has eluded biologists for more than 50 years. (more…)

Read More

Scientists Determine What Makes an Orangutan an Orangutan

*New map of the genetic code of endangered orangutans yields important new conservation tools and insights into evolution*

For the first time, scientists have mapped the genome–the genetic code–of orangutans. This new tool may be used to support efforts to maintain the genetic diversity of captive and wild orangutans. The new map of the orangutan genome may also be used to help improve our understanding of the evolution of primates, including humans.

Partially funded by the National Science Foundation, the orangutan study appears in the Jan. 27 issue of Nature. It was conducted by an international team of scientists led by Devin P. Locke of the Genome Center at Washington University. (more…)

Read More