Tag Archives: Environment

On the Road to Fault-Tolerant Quantum Computing

Collaboration at Berkeley Lab’s Advanced Light Source Induces High Temperature Superconductivity in a Toplogical Insulator

Reliable quantum computing would make it possible to solve certain types of extremely complex technological problems millions of times faster than today’s most powerful supercomputers. Other types of problems that quantum computing could tackle would not even be feasible with today’s fastest machines. The key word is “reliable.” If the enormous potential of quantum computing is to be fully realized, scientists must learn to create “fault-tolerant” quantum computers. A small but important step toward this goal has been achieved by an international collaboration of researchers from China’s  Tsinghua University and the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) working at the Advanced Light Source (ALS). (more…)

Read More

The Failing Freezer: How Soil Microbes Affect Global Climate

With a $3.9 million grant from the U.S. Department of Energy, a UA-led international collaboration studies how microbes release greenhouse gases as they gain access to nutrients in the soil thawing under the influence of warmer global temperatures.

The U.S. Department of Energy has awarded $3.9 million to an international collaboration led by University of Arizona ecologists Scott Saleska and Virginia Rich to study how microbes release greenhouse gases as they access nutrients in thawing permafrost soils under the influence of a warmer climate.  (more…)

Read More

Berkeley Lab Releases Most Comprehensive Databook on China’s Energy and Environment

In the five years since the China Energy Group of the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) released its last edition of the China Energy Databook, China has achieved two dubious distinctions: it surpassed the United States in energy consumption and it surpassed the United States in energy-related emissions of carbon dioxide, becoming the world leader on both scores.

With these important shifts in the global energy landscape, the eighth edition of the China Energy Databook is being released this week. The Databook is the most comprehensive publicly available resource known to exist covering China’s energy and environmental statistics. The China Energy Group researchers have amassed an enormous trove of data from firsthand sources and organized much of it into a relational database, making it far more useful for research and analytical purposes. (more…)

Read More

Google, Intel Founders Support Undersea Research by UMass Amherst Microbiologist

AMHERST, Mass. – When microbiologist James Holden of the University of Massachusetts Amherst launches new studies next month of the microbes living deep in the cracks and thermal vents around an undersea volcano, for the first time in his 25-year career his deep-sea research will not be funded by a government source.

Instead, Holden will be funded by philanthropists committed to supporting oceanographic research: The Gordon and Betty Moore Foundation started by the co-founder of Intel and his wife, and the Schmidt Ocean Institute (SOI), started by Eric Schmidt of Google and his wife, Wendy. The Moores’ foundation is dedicated to advancing environmental conservation and scientific research, while the SOI supports oceanographic research projects that “help expand the understanding of the world’s oceans through technological advancements, intelligent observation and analysis, and open sharing of information.”  (more…)

Read More

Ese’eja Nation

UD professor, scholar document culture of Peruvian community

As the elders of a small hunter-gatherer community told the story of how their people came to be, University of Delaware assistant professor of art Jonathan Cox and Summer Scholar Sarah Driver sat and listened, intrigued by the tale.

Over the course of seven days, they learned firsthand about the Ese’eja (ess-a-eha) Nation, a community of three distinct villages living in the remote areas of Infierno, Palma Real and Sonene, Peru.  (more…)

Read More

If We Landed on Europa, What Would We Want to Know?

Most of what scientists know of Jupiter’s moon Europa they have gleaned from a dozen or so close flybys from NASA’s Voyager 2 spacecraft in 1979 and NASA’s Galileo spacecraft in the mid-to-late 1990s. Even in these fleeting, paparazzi-like encounters, scientists have seen a fractured, ice-covered world with tantalizing signs of a liquid water ocean under its surface. Such an environment could potentially be a hospitable home for microbial life. But what if we got to land on Europa’s surface and conduct something along the lines of a more in-depth interview? What would scientists ask? A new study in the journal Astrobiology authored by a NASA-appointed science definition team lays out their consensus on the most important questions to address.

“If one day humans send a robotic lander to the surface of Europa, we need to know what to look for and what tools it should carry,” said Robert Pappalardo, the study’s lead author, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “There is still a lot of preparation that is needed before we could land on Europa, but studies like these will help us focus on the technologies required to get us there, and on the data needed to help us scout out possible landing locations. Europa is the most likely place in our solar system beyond Earth to have life today, and a landed mission would be the best way to search for signs of life.” (more…)

Read More

One Tree’s Architecture Reveals Secrets of a Forest, Study Finds

Behind the dazzling variety of shapes and forms found in trees hides a remarkably similar architecture based on fundamental, shared principles, UA ecologists have discovered.

Researchers in the University of Arizona’s department of ecology and evolutionary biology have found that despite differences in appearance, trees across species share remarkably similar architecture and can tell scientists a lot about an entire forest.

Just by looking at a tree’s branching pattern, it turns out, scientists can gather clues about how it functions – for example how much carbon dioxide it exchanges with the atmosphere or how much water transpires through its leaves – regardless of the tree’s shape or species.  (more…)

Read More

Evolution picks up hitchhikers

In a twist on “survival of the fittest,” researchers have discovered that evolution is driven not by a single beneficial mutation but rather by a group of mutations, including ones called “genetic hitchhikers” that are simply along for the ride. These hitchhikers are mutations that do not appear to have a role in contributing to an organism’s fitness and therefore its evolution, yet may play an important role down the road.

Researchers from Princeton University found in a study of 1,000 generations of adaptation in 40 yeast populations that about five to seven specific mutations, rather than just a one, are needed for an organism to succeed. The knowledge of how mutations drive evolution can inform our understanding of how tumors resist chemotherapeutics and how bacteria evolve resistance to antibiotics. The study was published July 21 in the journal Nature. (more…)

Read More