*Disruption of wind shear enables stronger storms*
Pollution is making Arabian Sea cyclones more intense, according to a study in this week’s issue of the journal Nature.
Traditionally, prevailing wind shear patterns prohibit cyclones in the Arabian Sea from becoming major storms.
The Nature paper suggests that weakening winds have enabled the formation of stronger cyclones in recent years–including storms in 2007 and 2010 that were the first recorded storms to enter the Gulf of Oman. (more…)
*Evidence of water mass moving south 70 million years ago shows how warmth was distributed*
COLUMBIA, Mo. – New research from the University of Missouri indicates that Atlantic Ocean temperatures during the greenhouse climate of the Late Cretaceous Epoch were influenced by circulation in the deep ocean. These changes in circulation patterns 70 million years ago could help scientists understand the consequences of modern increases in greenhouse gases.
“We are examining ocean conditions from several past greenhouse climate intervals so that we can understand better the interactions among the atmosphere, the oceans, the biosphere, and climate,” said Kenneth MacLeod, professor of geological sciences in the College of Arts and Science. “The Late Cretaceous Epoch is a textbook example of a greenhouse climate on earth, and we have evidence that a northern water mass expanded southwards while the climate was cooling. At the same time, a warm, salty water mass that had been present throughout the greenhouse interval disappeared from the tropical Atlantic.” (more…)
Woods Hole Oceanographic Institution (WHOI) scientists have discovered that bacterial communication could have a significant impact on the planet’s climate.
In the ocean, bacteria coalesce on tiny particles of carbon-rich detritus sinking through the depths. WHOI marine biogeochemists Laura Hmelo, Benjamin Van Mooy, and Tracy Mincer found that these bacteria send out chemical signals to discern if other bacteria are in the neighborhood. If enough of their cohorts are nearby, then bacteria en masse commence secreting enzymes that break up the carbon-containing molecules within the particles into more digestible bits. It has been suggested that coordinated expression of enzymes is very advantageous for bacteria on sinking particles, and Hmelo and her colleagues have uncovered the first proof of this in the ocean. (more…)
*Three-year series of scientific missions from Arctic to Antarctic produces new views of atmospheric chemistry*
A three-year series of research flights from the Arctic to the Antarctic has successfully produced an unprecedented portrait of greenhouse gases and particles in the atmosphere.
The far-reaching field project, known as HIPPO, ends this week, and has enabled researchers to generate the first detailed mapping of the global distribution of gases and particles that affect Earth’s climate. (more…)
*Melting ice sheets contributed much more to rising sea levels than thermal expansion of warming ocean waters during the Last Interglacial Period, a UA-led team of researchers has found. The results further suggest that ocean levels continue to rise long after warming of the atmosphere levels off.*
Thermal expansion of seawater contributed only slightly to rising sea levels compared to melting ice sheets during the Last Interglacial Period, a University of Arizona-led team of researchers has found.
The study combined paleoclimate records with computer simulations of atmosphere-ocean interactions and the team’s co-authored paper is accepted for publication in Geophysical Research Letters. (more…)
A leading academic at the University of Exeter has played a central role in compiling a report which could be vital for global efforts to tackle climate change.
Professor Catherine Mitchell, part of the University’s Energy Policy Group based in Cornwall, was one of only two experts from the UK to contribute to the ‘Special Report on Renewable Energy Sources and Climate Change Mitigation’ (SRREN). (more…)
PASADENA, Calif. – Final preparations are under way for the June 9 launch of the international Aquarius/SAC-D observatory. The mission’s primary instrument, Aquarius, will study interactions between ocean circulation, the water cycle and climate by measuring ocean surface salinity.
Engineers at Vandenberg Air Force Base in California are performing final tests before mating Aquarius/SAC-D to its Delta II rocket. The mission is a collaboration between NASA and Argentina’s space agency, Comision Nacional de Actividades Espaciales (CONAE), with participation from Brazil, Canada, France and Italy. SAC stands for Satelite de Applicaciones Cientificas. Aquarius was built by NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the agency’s Goddard Space Flight Center in Greenbelt, Md. (more…)