A new study finds that the pattern of heat coming from volcanoes on Io’s surface disposes of the generally-accepted model of internal heating. The heat pouring out of Io’s hundreds of erupting volcanoes indicates a complex, multi-layer source. These results come from data collected by NASA spacecraft and ground-based telescopes and appear in the June issue of the journal Icarus.
A map of hot spots, classified by the amount of heat being emitted, shows the global distribution and wide range of volcanic activity on Io. Most of Io’s eruptions dwarf their contemporaries on Earth. (more…)
When it comes to advising graduate students and postdoctoral scholars, Yale faculty member Menachem Elimelech believes his job isn’t rocket science.(more…)
PASADENA, Calif. — The faint, lumpy glow given off by the very first objects in the universe may have been detected with the best precision yet, using NASA’s Spitzer Space Telescope. These faint objects might be wildly massive stars or voracious black holes. They are too far away to be seen individually, but Spitzer has captured new, convincing evidence of what appears to be the collective pattern of their infrared light.
The observations help confirm the first objects were numerous in quantity and furiously burned cosmic fuel.
“These objects would have been tremendously bright,” said Alexander “Sasha” Kashlinsky of NASA’s Goddard Space Flight Center in Greenbelt, Md., lead author of a new paper appearing in The Astrophysical Journal. “We can’t yet directly rule out mysterious sources for this light that could be coming from our nearby universe, but it is now becoming increasingly likely that we are catching a glimpse of an ancient epoch. Spitzer is laying down a roadmap for NASA’s upcoming James Webb Telescope, which will tell us exactly what and where these first objects were.”(more…)
UCLA-created nanoscale protein containers could aid drug, vaccine delivery
UCLA biochemists have designed specialized proteins that assemble themselves to form tiny molecular cages hundreds of times smaller than a single cell. The creation of these miniature structures may be the first step toward developing new methods of drug delivery or even designing artificial vaccines.
Hosted by world-renowned astrophotographer Adam Block at the UA’s Mount Lemmon SkyCenter, a group of sky and astronomy enthusiasts watched Venus cross the sun from the highest vantage point in Southern Arizona.
On Nov. 24, 1639, in the tiny village of Much Hoole not far from Liverpool, England, a poor farmer’s son and self-taught astronomer affixed a sheet of paper in front of a makeshift telescope pointed at the sun and waited.
Thirty-five minutes before sunset, a dark, round spot appeared right next to the bright disc that was the sun’s face projected on the paper, and made Jeremiah Horrocks, only 20 years old at the time, the first known human to predict, observe and record a transit – the passage of a planet across the sun as seen from Earth.
Almost 373 years later, a group of sky enthusiasts is gathered beneath the dome of one of the University of Arizona’s observatories on Mount Lemmon just north of Tucson, Ariz. (more…)
Berkeley Lab researchers use an ultrafast laser to better understand high-temperature superconductors
Superconductivity, in which electric current flows without resistance, promises huge energy savings – from low-voltage electric grids with no transmission losses, superefficient motors and generators, and myriad other schemes. But such everyday applications still lie in the future, because conventional superconductivity in metals can’t do the job.
Although they play important roles in science, industry, and medicine, conventional superconductors must be maintained at temperatures a few degrees above absolute zero, which is tricky and expensive. Wider uses will depend on higher-temperature superconductors that can function well above absolute zero. Yet known high-temperature (high-Tc) superconductors are complex materials whose electronic structures, despite decades of work, are still far from clear. (more…)
An international research team led by the University of Colorado Boulder has generated the first laser-like beams of X-rays from a tabletop device, paving the way for major advances in many fields including medicine, biology and nanotechnology development.(more…)
Ion bombardment of metal surfaces is an important, but poorly understood, nanomanufacturing technique. New research using sophisticated supercomputer simulations has shown what goes on in trillionths of a second. The advance could lead to better ways to predict the phenomenon and more uses of the technique to make new nanoscale products.
PROVIDENCE, R.I. [Brown University] — To modify a metal surface at the scale of atoms and molecules — for instance to refine the wiring in computer chips or the reflective silver in optical components — manufacturers shower it with ions. While the process may seem high-tech and precise, the technique has been limited by the lack of understanding of the underlying physics. In a new study, Brown University engineers modeled noble gas ion bombardments with unprecedented richness, providing long-sought insights into how it works.(more…)