Category Archives: Science

From Cassini for the Holidays: A Splendor Seldom Seen

PASADENA, Calif — Just in time for the holidays, NASA’s Cassini spacecraft, in orbit around Saturn for more than eight years now, has delivered another glorious, backlit view of the planet Saturn and its rings.

On Oct. 17, 2012, during its 174th orbit around the gas giant, Cassini was deliberately positioned within Saturn’s shadow, a perfect location from which to look in the direction of the sun and take a backlit view of the rings and the dark side of the planet. Looking back towards the sun is a geometry referred to by planetary scientists as “high solar phase;” near the center of your target’s shadow is the highest phase possible. This is a very scientifically advantageous and coveted viewing position, as it can reveal details about both the rings and atmosphere that cannot be seen in lower solar phase. (more…)

Read More

CU-Boulder Team Develops Swarm of Pingpong Ball-Sized Robots

University of Colorado Boulder Assistant Professor Nikolaus Correll likes to think in multiples. If one robot can accomplish a singular task, think how much more could be accomplished if you had hundreds of them.

Correll and his computer science research team, including research associate Dustin Reishus and professional research assistant Nick Farrow, have developed a basic robotic building block, which he hopes to reproduce in large quantities to develop increasingly complex systems.

Recently the team created a swarm of 20 robots, each the size of a pingpong ball, which they call “droplets.” When the droplets swarm together, Correll said, they form a “liquid that thinks.” (more…)

Read More

Flexing Fingers for Micro-Robotics: Berkeley Lab Scientists Create a Powerful, Microscale Actuator

Berkeley, Calif., Dec. 2012 — Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger. Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

“We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells,” says Berkeley Lab and UC Berkeley scientist Junqiao Wu. “What’s more, it uses this very interesting material—vanadium dioxide—and tells us more about the fundamental materials science of phase transitions.” (more…)

Read More

Bright Stars to Black Holes: UA Astronomer Awarded for Her Research

In addition to being selected as one of 50 scholars awarded fellowships each year at the prestigious Radcliffe Institute at Harvard University, the UA’s Feryal Ozel has won the 2013 American Physical Society’s Maria Goeppert Mayer Award for her cutting-edge research on neutron stars

Feryal Ozel studies two things most people don’t think about everyday: neutron stars and black holes. (more…)

Read More

Exploding Star Missing From Formation of Solar System

A new study published by University of Chicago researchers challenges the notion that the force of an exploding star prompted the formation of the solar system.

In this study, published online last month in Earth and Planetary Science Letters, authors Haolan Tang and Nicolas Dauphas found the radioactive isotope iron 60 — the telltale sign of an exploding star—low in abundance and well mixed in solar system material. As cosmochemists, they look for remnants of stellar explosions in meteorites to help determine the conditions under which the solar system formed. (more…)

Read More

Nanocrystals Not Small Enough to Avoid Defects

Berkeley Lab Scientists at Advanced Light Source Show Dislocations Can Be Induced by Pressure in Ultrafine Nanocrystals

Nanocrystals as protective coatings for advanced gas turbine and jet engines are receiving a lot of attention for their many advantageous mechanical properties, including their resistance to stress. However, contrary to computer simulations, the tiny size of nanocrystals apparently does not safeguard them from defects. (more…)

Read More

Monitoring Hurricanes: Georgia Tech Engineers Assist NASA with Instrument for Remotely Measuring Storm Intensity

A device designed by engineers at the Georgia Tech Research Institute (GTRI) is part of the Hurricane Imaging Radiometer (HIRAD), an experimental airborne system developed by the Earth Science Office at the NASA Marshall Space Flight Center in Alabama.

Known as an analog beam-former, the GTRI device is part of the radiometer, which is being tested by NASA on a Global Hawk unmanned aerial vehicle. The radiometer measures microwave radiation emitted by the sea foam that is produced when high winds blow across ocean waves. By measuring the electromagnetic radiation, scientists can remotely assess surface wind speeds at multiple locations within the hurricanes. (more…)

Read More

Space-Age Ceramics Get Their Toughest Test

Berkeley Lab Researchers Develop Real-Time CT-Scan Test Rig For Ceramic Composites at Ultrahigh Temperatures

Advanced ceramic composites can withstand the ultrahigh operational temperatures projected for hypersonic jet and next generation gas turbine engines, but real-time analysis of the mechanical properties of these space-age materials at ultrahigh temperatures has been a challenge – until now. Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed the first testing facility that enables CT-scanning of ceramic composites under controlled loads at ultrahigh temperatures and in real-time. (more…)

Read More