Category Archives: Science

How the turtle got its shell

The turtle has been in no rush to give up the secret of its shell — but after two centuries of close study, scientists are filling in the story of a structure unique in the history of life.

New research led by Tyler Lyson of Yale University and the Smithsonian Institution pushes back the origins of the turtle shell by about 40 million years, linking it to Eunotosaurus, a 260-million-year-old fossil reptile from South Africa. The work strengthens the fossil record and bolsters an existing theory about shell development while providing new details about its precise evolutionary pathway. (more…)

Read More

Forecast for Titan: Wild Weather Could be Ahead

Saturn’s moon Titan might be in for some wild weather as it heads into its spring and summer, if two new models are correct. Scientists think that as the seasons change in Titan’s northern hemisphere, waves could ripple across the moon’s hydrocarbon seas, and hurricanes could begin to swirl over these areas, too. The model predicting waves tries to explain data from the moon obtained so far by NASA’s Cassini spacecraft. Both models help mission team members plan when and where to look for unusual atmospheric disturbances as Titan summer approaches.

“If you think being a weather forecaster on Earth is difficult, it can be even more challenging at Titan,” said Scott Edgington, Cassini’s deputy project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “We know there are weather processes similar to Earth’s at work on this strange world, but differences arise due to the presence of unfamiliar liquids like methane. We can’t wait for Cassini to tell us whether our forecasts are right as it continues its tour through Titan spring into the start of northern summer.” (more…)

Read More

Moth-Inspired Nanostructures Take the Color Out of Thin Films

Inspired by the structure of moth eyes, researchers at North Carolina State University have developed nanostructures that limit reflection at the interfaces where two thin films meet, suppressing the “thin-film interference” phenomenon commonly observed in nature. This can potentially improve the efficiency of thin-film solar cells and other optoelectronic devices. (more…)

Read More

Diamond in the rough

UD researchers manipulate cubic zirconia to improve conductivity in fuel cells

Cubic zirconia has long been favored for its use in costume jewelry.

Known scientifically as yttria-stabilized zirconia, it is also a known conductor of oxygen, making it useful as an electrolyte in solid oxide fuel cells. 

Researchers at the University of Delaware recently fabricated the material into very thin films on the surface of sapphire crystals using a technique called sputtering to determine whether the conductivity for oxygen could be improved, enabling solid oxide fuel cells to become a more economical and efficient electrical power source. (more…)

Read More

Cannibal Tadpoles Key to Understanding Digestive Evolution

A carnivorous, cannibalistic tadpole may play a role in understanding the evolution and development of digestive organs, according to research from North Carolina State University. These findings may also shed light on universal rules of organ development that could lead to better diagnosis and prevention of intestinal birth defects.

NC State developmental biologist Nanette Nascone-Yoder, graduate student Stephanie Bloom and postdoc Cris Ledon-Rettig looked at Xenopus laevis (African clawed frog) and Lepidobatrachus laevis (Budgett’s frog) tadpoles. These frog species differ in diet and last shared a common ancestor about 110 million years ago. Like most tadpoles, Xenopus exist primarily on a diet of algae, and their long, simple digestive tracts are not able to process insects or proteins until they become adult frogs. Budgett’s is an aggressive species of frog which is carnivorous – and cannibalistic – in the tadpole stage. (more…)

Read More

Easy come, easy grow

Sperm cell release can be triggered by tightening the grip around the delivery organ, according to a team of nano and microsystems engineers and plant biologists at the University of Montreal and Concordia University. Concordia’s nanobiotech team devised a microchip that enabled the University of Montreal biologists to observe what happened when pollen tubes – the sperm delivery tools used by plants – tried to negotiate a microscopic obstacle course. The pollen tubes were exposed to a series of narrow, elastic openings resulting in a variety of cellular responses. When the opening was too narrow or tight, pollen tube growth stalled. However, the elongating tubes successfully penetrated slightly larger openings. Curiously, the pollen tubes burst and released the sperm cells when passing openings of a particular size relative to the pollen tube width. (more…)

Read More

Studying meteorites may reveal Mars’ secrets of life

In an effort to determine if conditions were ever right on Mars to sustain life, a team of scientists, including a Michigan State University professor, has examined a meteorite that formed on the red planet more than a billion years ago.

And although this team’s work is not specifically solving the mystery, it is laying the groundwork for future researchers to answer this age-old question. (more…)

Read More

Comparing Proteins at a Glance

Berkeley Lab Researchers Unveil Technique for Easy Comparisons of Proteins in Solution

A revolutionary X-ray analytical technique that enables researchers at a glance to identify structural similarities and differences between multiple proteins under a variety of conditions has been developed by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). As a demonstration, the researchers used this technique to gain valuable new insight into a protein that is a prime target for cancer chemotherapy.

“Proteins and other biological macromolecules are moving machines whose power is often derived from how their structural conformations change in response to their environment,” says Greg Hura, a scientist with Berkeley Lab’s Physical Biosciences Division. “Knowing what makes a protein change has incredible value, much like knowing that stepping on a gas pedal makes the wheels of a car spin.” (more…)

Read More