Tag Archives: hydrogen

Graphene Membranes May Lead To Enhanced Natural Gas Production, Less CO2 Pollution, Says CU Study

Engineering faculty and students at the University of Colorado Boulder have produced the first experimental results showing that atomically thin graphene membranes with tiny pores can effectively and efficiently separate gas molecules through size-selective sieving.

The findings are a significant step toward the realization of more energy-efficient membranes for natural gas production and for reducing carbon dioxide emissions from power plant exhaust pipes.

Mechanical engineering professors Scott Bunch and John Pellegrino co-authored a paper in Nature Nanotechnology with graduate students Steven Koenig and Luda Wang detailing the experiments. The paper was published Oct. 7 in the journal’s online edition. (more…)

Read More

The Helix Nebula: Bigger in Death than Life

A dying star is refusing to go quietly into the night, as seen in this combined infrared and ultraviolet view from NASA’s Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX), which NASA has lent to the California Institute of Technology in Pasadena. In death, the star’s dusty outer layers are unraveling into space, glowing from the intense ultraviolet radiation being pumped out by the hot stellar core.

This object, called the Helix nebula, lies 650 light-years away in the constellation of Aquarius. Also known by the catalog number NGC 7293, it is a typical example of a class of objects called planetary nebulae. Discovered in the 18th century, these cosmic works of art were erroneously named for their resemblance to gas-giant planets. (more…)

Read More

MU Research Team Creates New Cancer Drug that is 10 Times More Potent

Drug efficiently targets breast, lung and colon cancer; clinical trials could start within two years.

COLUMBIA, Mo. ­—  Legend has it that Ralph Waldo Emerson once said, “Build a better mousetrap, and the world will beat a path to your door.” University of Missouri researchers are doing just that, but instead of building mousetraps, the scientists are targeting cancer drugs. In a new study, MU medicinal chemists have taken an existing drug that is being developed for use in fighting certain types of cancer, added a special structure to it, and created a more potent, efficient weapon against cancer.

“Over the past decade, we have seen an increasing interest in using carboranes in drug design,” said Mark W. Lee Jr., assistant professor of chemistry in College of Arts and Science. “Carboranes are clusters of three elements — boron, carbon and hydrogen. Carboranes don’t fight cancer directly, but they aid in the ability of a drug to bind more tightly to its target, creating a more potent mechanism for destroying the cancer cells.” (more…)

Read More

Scientists Define New Limits of Microbial Life in Undersea Volcanoes

A third of Earth’s organisms live in rocks and sediments, but their lives have been a mystery

By some estimates, a third of Earth’s organisms live in our planet’s rocks and sediments, yet their lives are almost a complete mystery.

This week, the work of microbiologist James Holden of the University of Massachusetts-Amherst and colleagues shines a light into this dark world.

In the journal Proceedings of the National Academy of Sciences (PNAS), they report the first detailed data on methane-exhaling microbes that live deep in the cracks of hot undersea volcanoes. (more…)

Read More

From Soil Microbe to Super-Efficient Biofuel Factory?

Berkeley Lab-led team explores a way to create biofuels, minus the photosynthesis

Is there a new path to biofuels hiding in a handful of dirt? Lawrence Berkeley National Laboratory (Berkeley Lab) biologist Steve Singer leads a group that wants to find out. They’re exploring whether a common soil bacterium can be engineered to produce liquid transportation fuels much more efficiently than the ways in which advanced biofuels are made today.

The scientists are working with a bacterium called Ralstonia eutropha. It naturally uses hydrogen as an energy source to convert CO2 into various organic compounds. (more…)

Read More

UCLA Engineering Researchers Use Electricity to Generate Alternative Fuel

Imagine being able to use electricity to power your car — even if it’s not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time demonstrated a method for converting carbon dioxide into liquid fuel isobutanol using electricity.

Today, electrical energy generated by various methods is still difficult to store efficiently. Chemical batteries, hydraulic pumping and water splitting suffer from low energy-density storage or incompatibility with current transportation infrastructure. (more…)

Read More

The First Spectroscopic Measurement of an Anti-Atom

*Berkeley Lab scientists helped build and operate the ALPHA antimatter trap at CERN, which has now probed the internal structure of the antihydrogen atom for the first time, taking the first step toward possible new insights into the difference between matter and antimatter*

The ALPHA collaboration at CERN in Geneva has scored another coup on the antimatter front by performing the first-ever spectroscopic measurements of the internal state of the antihydrogen atom. Their results are reported in a forthcoming issue of Nature and are now online.

Ordinary hydrogen atoms are the most plentiful in the universe, and also the simplest – so simple, in fact, that some of the most fundamental physical constants have been discovered by measuring the tiny energy shifts resulting from the magnetic and electric interactions of hydrogen’s proton nucleus with its single orbiting electron. (more…)

Read More

Earth’s Core Deprived of Oxygen

Washington, D.C. — The composition of the Earth’s core remains a mystery. Scientists know that the liquid outer core consists mainly of iron, but it is believed that small amounts of some other elements are present as well. Oxygen is the most abundant element in the planet, so it is not unreasonable to expect oxygen might be one of the dominant “light elements” in the core. However, new research from a team including Carnegie’s Yingwei Fei shows that oxygen does not have a major presence in the outer core. This has major implications for our understanding of the period when the Earth formed through the accretion of dust and clumps of matter. Their work is published Nov. 24 in Nature. (more…)

Read More