Tag Archives: chromosome

Wie bleibt genetisches Material während der Fortpflanzung intakt?

MolekularbiologInnen erforschen Prozesse beim Ausschneiden und Einfügen von DNA

Eltern vererben ihre genetische Information in Form von Chromosomen. Diese sind jedoch nicht einfache Kopien, sondern ein Mosaik aus den beiden Chromosomenkopien, die sie selbst erhalten haben. Die Herstellung dieser Mosaike erfolgt durch einen Prozess des Ausschneidens und Einfügens von Chromosomenstücken. Wie solche Schnitte – auch Brüche genannt – in unserem genetischen Material repariert werden, untersuchen Verena Jantsch und ihr Team an den Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien. Ihre Ergebnisse geben wichtige Einblicke in die Prozesse, die sicherstellen, dass unser genetisches Material intakt bleibt und so genetische Krankheiten und Krebsentstehung verhindern.

(more…)

Read More

Racism May Accelerate Aging in African American Men

UMD-led study is first to link racism-related factors and cellular age

COLLEGE PARK, Md. – A new University of Maryland-led study reveals that racism may impact aging at the cellular level. Researchers found signs of accelerated aging in African American men who reported high levels of racial discrimination and who had internalized anti-Black attitudes. Findings from the study, which is the first to link racism-related factors and biological aging, are published in the American Journal of Preventive Medicine.

Racial disparities in health are well-documented, with African Americans having shorter life expectancy, and a greater likelihood of suffering from aging-related illnesses at younger ages compared to whites. Accelerated aging at the biological level may be one mechanism linking racism and disease risk. (more…)

Read More

UMass Amherst Cell Biologists Show Molecular Forces Are Key to Proper Cell Division

AMHERST, Mass. – Studies led by cell biologist Thomas Maresca at the University of Massachusetts Amherst are revealing new details about a molecular surveillance system that helps detect and correct errors in cell division that can lead to cell death or human diseases. Findings are reported in the current issue of the Journal of Cell Biology.

The purpose of cell division is to evenly distribute the genome between two daughter cells. To achieve this, every chromosome must properly interact with a football-shaped structure called the spindle. However, interaction errors between the chromosomes and spindle during division are amazingly common, occurring in 86 to 90 percent of chromosomes, says Maresca, an expert in mitosis. (more…)

Read More

UCLA Bioengineers Discover Single Cancer Cell Can Produce Up To Five Daughter Cells

Findings could aid researchers in understanding progression of disease

It’s well known in conventional biology that during the process of mammalian cell division, or mitosis, a mother cell divides equally into two daughter cells. But when it comes to cancer, say UCLA researchers, mother cells may be far more prolific.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science developed a platform to mechanically confine cells, simulating the in vivo three-dimensional environments in which they divide, and found that, upon confinement, cancer cells often split into three or more daughter cells.

“We hope that this platform will allow us to better understand how the 3-D mechanical environment may play a role in the progression of a benign tumor into a malignant tumor that kills,” said Dino Di Carlo, an associate professor of bioengineering at UCLA and principal investigator on the research. (more…)

Read More

Human Brain Evolution Tied to Partial Gene Copy That Blocks Original

A brain-development gene found exclusively in humans has an unusual evolutionary history and could contribute to what makes us distinctly human. Equally surprising, this is a partial gene created from an incomplete duplication of its “parent” gene in the prehistoric human genome.

Gene duplication is an important driving force in creating physical changes in living things during evolution, explained the researchers studying the SRGAP2 gene family. Drs. Megan Dennis and Xander Nuttle, in the Howard Hughes Medicine Institute research lab of Dr. Evan Eichler, University of Washington professor of genome sciences, co-authored the report on the findings. (more…)

Read More

Low Quality Genes May Cause Mutational Meltdown

Deficiencies compound over time, researchers say

Evolutionary biologists at the University of Toronto have found that individuals with low-quality genes may produce offspring with even more inferior chromosomes, possibly leading to the extinction of certain species over generations.

Their study, published in Proceedings of the National Academy of Sciences, predicts that organisms with such genetic deficiencies could experience an increased number of mutations in their DNA, relative to individuals with high-quality genes. The research was done on fruit flies whose simple system replicates aspects of biology in more complex systems, so the findings could have implications for humans. (more…)

Read More

New Molecule Has Potential to Help Treat Genetic Diseases and HIV

AUSTIN, Texas — Chemists at The University of Texas at Austin have created a molecule that’s so good at tangling itself inside the double helix of a DNA sequence that it can stay there for up to 16 days before the DNA liberates itself, much longer than any other molecule reported.

It’s an important step along the path to someday creating drugs that can go after rogue DNA directly. Such drugs would be revolutionary in the treatment of genetic diseases, cancer or retroviruses such as HIV, which incorporate viral DNA directly into the body’s DNA. (more…)

Read More

Ancient Humans Were Mixing it Up

*Anatomically modern humans interbred with more archaic hominin forms even before they migrated out of Africa, a UA-led team of researchers has found.*

It is now widely accepted that anatomically modern humans of the species Homo sapiens originated in Africa and eventually spread throughout the world. Ancient DNA recovered from fossil Neanderthal bones suggests they interbred with more archaic hominin forms once they had left their evolutionary cradle for the cooler climates of Eurasia, but whether they exchanged genetic material with other, now extinct archaic hominin varieties in Africa remained unclear.

In a paper published in the Proceedings of the National Academy of Sciences, or PNAS, a team led by Michael Hammer, an associate professor and research scientist with the UA’s Arizona Research Labs, provides evidence that anatomically modern humans were not so unique that they remained separate. (more…)

Read More