Tag Archives: carbon dioxide

New Study Reveals How Sensitive U.S. East Coast Regions May Be to Ocean Acidification

A continental-scale chemical survey in the waters of the eastern U.S. and Gulf of Mexico is helping researchers determine how distinct bodies of water will resist changes in acidity. The study, which measures varying levels of carbon dioxide (CO2) and other forms of carbon in the ocean, was conducted by scientists from 11 institutions across the U.S. and was published in the journal Limnology and Oceanography.

“Before now, we haven’t had a very clear picture of acidification status on the east coast of the U.S.,” says Zhaohui ‘Aleck’ Wang, the study’s lead author and a chemical oceanographer at Woods Hole Oceanographic Institution (WHOI). “It’s important that we start to understand it, because increase in ocean acidity could deeply affect marine life along the coast and has important implications for people who rely on aquaculture and fisheries both commercially and recreationally.” (more…)

Read More

Dead Forests Release Less Carbon Into Atmosphere Than Expected

Billions of trees killed in the wake of mountain pine beetle infestations, ranging from Mexico to Alaska, have not resulted in a large spike in carbon dioxide released into the atmosphere, contrary to predictions, a UA-led study has found.

Massive tree die-offs release less carbon into the atmosphere than previously thought, new research led by the University of Arizona suggests. 

Across the world, trees are dying in increasing numbers, most likely in the wake of a climate changing toward drier and warmer conditions, scientists suspect. In western North America, outbreaks of mountain pine beetles (Dendroctonus ponderosae) have killed billions of trees from Mexico to Alaska over the last decade.  (more…)

Read More

A Dual Look at Photosystem II Using the World’s Most Powerful X-Ray Laser

Berkeley Lab and SLAC Researchers Demonstrate Room Temperature Simultaneous Diffraction/Spectroscopy of Metalloenzymes

From providing living cells with energy, to nitrogen fixation, to the splitting of water molecules, the catalytic activities of metalloenzymes – proteins that contain a metal ion – are vital to life on Earth. A better understanding of the chemistry behind these catalytic activities could pave the way for exciting new technologies, most prominently artificial photosynthesis systems that would provide  clean, green and renewable energy. Now, researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the SLAC National Accelerator Laboratory have taken a major step towards achieving this goal.

Using ultrafast, intensely bright pulses of X-rays from SLAC’s Linac Coherent Light Source (LCLS), the world’s most powerful X-ray laser, the researchers were able to simultaneously image at room temperature the atomic and electronic structures of photosystem II, a metalloenzyme critical to photosynthesis. (more…)

Read More

Lungs of the Planet Reveal Their True Sensitivity to Global Warming

Tropical rainforests are often called the “lungs of the planet” because they generally draw in carbon dioxide and breathe out oxygen. 

But the amount of carbon dioxide that rainforests absorb, or produce, varies hugely with year-to-year variations in the climate.

In a paper published online (Feb 6 2013) by the journal Nature, a team of climate scientists from the University of Exeter, the Met Office-Hadley Centre and the NERC Centre for Ecology & Hydrology, has shown that these variations reveal how vulnerable the rainforest is to climate change. (more…)

Read More

UA Scientists Help Discover Most Abundant Ocean Virus

Researchers have discovered four previously unknown viruses that infect the Earth’s most abundant organism, the marine bacterium SAR11. Because of their huge numbers, these tiny players have critical roles in the global cycle of carbon and other nutrients.

The greatest battle in Earth’s history has been going on for hundreds of millions of years, isn’t over yet, and until now no one knew it existed, scientists reported today in the journal Nature.

In one corner is the Earth’s most abundant organism: SAR11, an ocean-living bacterium that survives where most other cells would die and plays a major role in the planet’s carbon cycle. It had been theorized that SAR11 was so small and widespread that it must be invulnerable to attack. (more…)

Read More

New Coal Technology Harnesses Energy without Burning, Nears Pilot-Scale Development

COLUMBUS, Ohio — A new form of clean coal technology reached an important milestone recently, with the successful operation of a research-scale combustion system at Ohio State University. The technology is now ready for testing at a larger scale.

For 203 continuous hours, the Ohio State combustion unit produced heat from coal while capturing 99 percent of the carbon dioxide produced in the reaction. (more…)

Read More

Study Finds Severe Climate Jeopardizing Amazon Forest

PASADENA, Calif. – An area of the Amazon rainforest twice the size of California continues to suffer from the effects of a megadrought that began in 2005, finds a new NASA-led study. These results, together with observed recurrences of droughts every few years and associated damage to the forests in southern and western Amazonia in the past decade, suggest these rainforests may be showing the first signs of potential large-scale degradation due to climate change.

An international research team led by Sassan Saatchi of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., analyzed more than a decade of satellite microwave radar data collected between 2000 and 2009 over Amazonia. The observations included measurements of rainfall from NASA’s Tropical Rainfall Measuring Mission and measurements of the moisture content and structure of the forest canopy (top layer) from the Seawinds scatterometer on NASA’s QuikScat spacecraft. (more…)

Read More

Magma in Earth’s Mantle Forms Deeper Than Once Thought

Study simulating pressures in mantle beneath the ocean floor shows that rocks can melt at depths up to 250 kilometers

Magma forms far deeper than geologists previously thought, according to new research results.

A team led by geologist Rajdeep Dasgupta of Rice University put very small samples of peridotite, rock derived from Earth’s mantle, under high pressures in a laboratory.

The scientists found that the rock can and does liquify, at least in small amounts, at pressures equivalent to those found as deep as 250 kilometers down in the mantle beneath the ocean floor. (more…)

Read More