Tag Archives: physicist

Particle Accelerator That Can Fit on a Tabletop Opens New Chapter for Science Research

AUSTIN, Texas — Physicists at The University of Texas at Austin have built a tabletop particle accelerator that can generate energies and speeds previously reached only by major facilities that are hundreds of meters long and cost hundreds of millions of dollars to build.

“We have accelerated about half a billion electrons to 2 gigaelectronvolts over a distance of about 1 inch,” said Mike Downer, professor of physics in the College of Natural Sciences. “Until now that degree of energy and focus has required a conventional accelerator that stretches more than the length of two football fields. It’s a downsizing of a factor of approximately 10,000.” (more…)

Read More

New Path to More Efficient Organic Solar Cells Uncovered at Berkeley Lab’s Advanced Light Source

Why are efficient and affordable solar cells so highly coveted? Volume. The amount of solar energy lighting up Earth’s land mass every year is nearly 3,000 times the total amount of annual human energy use. But to compete with energy from fossil fuels, photovoltaic devices must convert sunlight to electricity with a certain measure of efficiency. For polymer-based organic photovoltaic cells, which are far less expensive to manufacture than silicon-based solar cells, scientists have long believed that the key to high efficiencies rests in the purity of the polymer/organic cell’s two domains – acceptor and donor. Now, however, an alternate and possibly easier route forward has been shown.

Working at Berkeley Lab’s Advanced Light Source (ALS), a premier source of X-ray and ultraviolet light beams for research, an international team of scientists found that for highly efficient polymer/organic photovoltaic cells, size matters. (more…)

Read More

Slinky Science Inspires African School Children

A University of Exeter physicist has inspired hundreds of African school children to engage with science during a whirlwind outreach tour to Malawi.

Professor Pete Vukusic used simple interactive demonstrations including slinky springs, glass prisms, light sticks and iridescent butterflies to enthral large classes of pupils and teachers in underprivileged rural schools.

The charismatic lecturer combined use of the demos and an interactive and engaging teaching style to explain fundamental and modern science principles to students who are used to formal instructional teaching methods. Professor Vukusic hopes his visit will both help to inspire science learning in these schools and help their teachers adapt to more modern techniques that engage young people more effectively. (more…)

Read More

Space Life

NASA funds astrobiology research by Delaware Biotechnology Institute scientist

Does life exist anywhere else in the universe? That’s the type of broad but poignant question NASA likes to ask, according to Chandran Sabanayagam, associate scientist in the Bioimaging Center at the Delaware Biotechnology Institute (DBI). And he would know, because he’s preparing to help answer it.

NASA will receive $100 billion from the federal government over the next five years to assure America is number one in space exploration, according to Astrobiology.com. As part of its push to seek new partnerships and broaden its vision, NASA is offering grants to people conducting transformational science. With this opportunity, Sabanayagam is merging his love of physics and biology. (more…)

Read More

Ultracold Experiments Heat Up Quantum Research

University of Chicago physicists have experimentally demonstrated, for the first time, that atoms chilled to temperatures near absolute zero may behave like seemingly unrelated natural systems of vastly different scales, offering potential insights into links between the atomic realm and deep questions of cosmology.

This ultracold state, called “quantum criticality,” hints at similarities between such diverse phenomena as the gravitational dynamics of black holes or the exotic conditions that prevailed at the birth of the universe, said Cheng Chin, associate professor in physics at UChicago. The results could even point to ways of simulating cosmological phenomena of the early universe by studying systems of atoms in states of quantum criticality. (more…)

Read More

Mr. Fusion Helps Students Build a Nuclear Reactor

*Microsoft employee Carl Greninger helped a team of young students build a working nuclear reactor in his garage. He hopes the project can inspire a passion for physics in students around the country.*

REDMOND, Wash. – Sometimes you have to smash a few atoms to excite people about science.

So says Carl Greninger, a program manager in Microsoft IT Operations by day and full-fledged physics fanatic by night. That’s why he decided to help some young students get hands-on experience with something they couldn’t find in their classrooms: a working thermonuclear reactor.

For the past year, a group of local students – some as young as 13 years old – have met at Greninger’s garage every Friday night to build a type of fusion reactor known as a Farnsworth–Hirsch Fusor. Dubbed IEC-9000, their machine has been fusing atoms and producing neutrons since May. It cost about as much as a high-end SUV, weighs 1,400 pounds, and generates temperatures hotter than the surface of the sun. (more…)

Read More

On the Sizeable Wings of Albatrosses

An oceanographer may be offering the best explanation yet of one of the great mysteries of flight—how albatrosses fly such vast distances, even around the world, almost without flapping their wings. The answer, says Philip L. Richardson of the Woods Hole Oceanographic Institution (WHOI), lies in a concept called dynamic soaring, in which the large bird utilizes the power of above-ocean wind shear while tacking like an airborne sailboat.

“I have a simple model that explains the basic physics of what albatrosses do,” says Richardson, a scientist emeritus at WHOI, who, in addition to his primary career in studying ocean currents, has also piloted gliders. The key, he says, is the bird’s ability to balance the kinetic energy gained in soaring with the energy lost from drag. (more…)

Read More

Theoretical Breakthrough: Generating Matter and Antimatter from the Vacuum

ANN ARBOR, Mich.— Under just the right conditions — which involve an ultra-high-intensity laser beam and a two-mile-long particle accelerator — it could be possible to create something out of nothing, according to University of Michigan researchers.

The scientists and engineers have developed new equations that show how a high-energy electron beam combined with an intense laser pulse could rip apart a vacuum into its fundamental matter and antimatter components, and set off a cascade of events that generates additional pairs of particles and antiparticles. (more…)

Read More