Tag Archives: Environment

Photo from NASA Mars Orbiter Shows Wind’s Handiwork

Some images of stark Martian landscapes provide visual appeal beyond their science value, including a recent scene of wind-sculpted features from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA’s Mars Reconnaissance Orbiter.

The scene shows dunes and sand ripples of various shapes and sizes inside an impact crater in the Noachis Terra region of southern Mars. Patterns of dune erosion and deposition provide insight into the sedimentary history of the area. (more…)

Read More

Satellite Tracking Helps Russian Tanker Navigate Critical Sea Duck Habitat

ANCHORAGE — On its way to deliver emergency fuel to Nome, Alaska, the Russian tanker Renda will move through an area used by wintering spectacled eiders, a federally threatened sea duck. But, to protect the ducks and their wintering habitat, resource managers from the U.S. Fish and Wildlife Service and navigators from the U.S. Coast Guard are using satellite telemetry information from the U.S. Geological Survey to plot a route for the tanker that minimizes impacts to this species and its habitat.

“Nearly 20 years ago, USGS biologists used the latest satellite tracking technology available at the time to uncover the mysterious wintering behavior of the spectacled eider, now a threatened species,” said USGS Director Marcia McNutt. “Little did these scientists know at the time that their information would be critical in allowing a Russian tanker decades later to thread the needle to Nome in order to deliver life-saving fuel oil without taking a toll on these elusive sea ducks.” (more…)

Read More

New Take on Impacts of Low Dose Radiation

*Berkeley Lab Researchers Find Evidence Suggesting Risk May Not Be Proportional to Dose at Low Dose Levels*

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), through a combination of time-lapse live imaging and mathematical modeling of a special line of human breast cells, have found evidence to suggest that for low dose levels of ionizing radiation, cancer risks may not be directly proportional to dose. This contradicts the standard model for predicting biological damage from ionizing radiation – the linear-no-threshold hypothesis or LNT – which holds that risk is directly proportional to dose at all levels of irradiation.

“Our data show that at lower doses of ionizing radiation, DNA repair mechanisms work much better than at higher doses,” says Mina Bissell, a world-renowned breast cancer researcher with Berkeley Lab’s Life Sciences Division. “This non-linear DNA damage response casts doubt on the general assumption that any amount of ionizing radiation is harmful and additive.” (more…)

Read More

Powerful Mathematical Model Greatly Improves Predictions for Species Facing Climate Change

UCLA life scientists and colleagues have produced the most comprehensive mathematical model ever devised to track the health of populations exposed to environmental change.

The research, federally funded by the National Science Foundation, is published Dec. 2 in the journal Science.

The team’s groundbreaking integral projection model, or IPM, unites various sub-disciplines of population biology, including population ecology, quantitative genetics, population genetics, and life-span and offspring information, allowing researchers to link many different data sources simultaneously. Scientists can now change just a single variable, like temperature, and see how that affects many factors for a population. (more…)

Read More

New Projection Shows Global Food Demand Doubling by 2050

*Increasing yield in poorer countries could decrease adverse environmental effects*

Global food demand could double by 2050, according to a new projection reported this week in the journal Proceedings of the National Academy of Sciences (PNAS).

The analysis also shows that the world faces major environmental challenges unless agricultural practices change.

Scientists David Tilman and Jason Hill of the University of Minnesota (UMN) and colleagues found that producing the amount of food needed could significantly increase levels of carbon dioxide and nitrogen in the environment, and may cause the extinction of numerous species. (more…)

Read More

Berkeley Lab Researchers Create First of Its Kind Gene Map of Sulfate-reducing Bacterium: Work Holds Implications for Future Bioremediation Efforts

Critical genetic secrets of a bacterium that holds potential for removing toxic and radioactive waste from the environment have been revealed in a study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab). The researchers have provided the first ever map of the genes that determine how these bacteria interact with their surrounding environment.

“Knowing how bacteria respond to environmental changes is crucial to our understanding of how their physiology tracks with consequences that are both good, such as bioremediation, and bad, such as biofouling,” says Aindrila Mukhopadhyay, a chemist with Berkeley Lab’s Physical Biosciences Division, who led this research. “We have reported the first systematic mapping of the genes in a sulfate-reducing bacterium – Desulfovibrio vulgaris – that regulate the mechanisms by which the bacteria perceive and respond to environmental signals.” (more…)

Read More

Manufacturing Goes Viral

*Researchers coax viruses to assemble into synthetics with microstructures and properties akin to those of corneas, teeth and skin*

Using a simple, single-step process, engineers and scientists at the University of California at Berkeley recently developed a technique to direct benign, filamentous viruses called M13 phages to serve as structural building blocks for materials with a wide range of properties.

By controlling the physical environment alone, the researchers caused the viruses to self-assemble into hierarchically organized thin-film structures, with complexity that ranged from simple ridges, to wavy, chiral strands, to truly sophisticated patterns of overlapping strings of material–results that may also shed light on the self-assembly of biological tissues in nature. (more…)

Read More

West Nile Virus Transmission Linked with Land-Use Patterns and “Super-spreaders”

*Spread highest in urbanized and agricultural habitats*

After its initial appearance in New York in 1999, West Nile virus spread across the United States in just a few years and is now well established throughout North and South America.

Both the mosquitoes that transmit it and the birds that are important hosts for the virus are abundant in areas that have been modified by human activities.

As a result, transmission of West Nile virus is highest in urbanized and agricultural habitats. (more…)

Read More