Category Archives: Science

Microneedle Sensors May Allow Real-Time Monitoring of Body Chemistry

Researchers from North Carolina State University, Sandia National Laboratories, and the University of California, San Diego have developed new technology that uses microneedles to allow doctors to detect real-time chemical changes in the body – and to continuously do so for an extended period of time.

“We’ve loaded the hollow channels within microneedles with electrochemical sensors that can be used to detect specific molecules or pH levels,” says Dr. Roger Narayan, co-author of a paper describing the research, and a professor in the joint biomedical engineering department of NC State’s College of Engineering and the University of North Carolina at Chapel Hill. (more…)

Read More

CAD for RNA

*Joint BioEnergy Institute Researchers Develop CAD-Type Tools for Engineering RNA Control Systems*

The computer assisted design (CAD) tools that made it possible to fabricate integrated circuits with millions of transistors may soon be coming to the biological sciences. Researchers at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) have developed CAD-type models and simulations for RNA molecules that make it possible to engineer biological components or “RNA devices” for controlling genetic expression  in microbes. This holds enormous potential for microbial-based sustainable production of advanced biofuels, biodegradable plastics, therapeutic drugs and a host of other goods now derived from petrochemicals. (more…)

Read More

WISE Presents a Cosmic Wreath

Just in time for the holidays, astronomers have come across a new image from NASA’s Wide-field Infrared Survey Explorer, or WISE, that some say resembles a wreath. You might even think of the red dust cloud as a cheery red bow, and the bluish-white stars as silver bells. This star-forming nebula is named Barnard 3. Baby stars are being born throughout the dusty region, while the “silver bell” stars are located both in front of, and behind, the nebula. (more…)

Read More

Altered Gene Tracks RNA Editing in Neurons

RNA editing is a key step in gene expression. Scientists at Brown University report in Nature Methods that they have engineered a gene capable of visually displaying the activity of the key enzyme ADAR in living fruit flies.

PROVIDENCE, R.I. [Brown University] — To track what they can’t see, pilots look to the green glow of the radar screen. Now biologists monitoring gene expression, individual variation, and disease have a glowing green indicator of their own: Brown University biologists have developed a “radar” for tracking ADAR, a crucial enzyme for editing RNA in the nervous system. (more…)

Read More

New Dye Will Lead To More Efficient Solar Energy Technology

A North Carolina State University invention has significant potential to improve the efficiency of solar cells and other technologies that derive energy from light.

Dr. Ahmed El-Shafei’s research group invented a new “sensitizer,” or dye, that harvests more ambient and solar light than any dyes currently on the market for use in dye-sensitized solar cells (DSSCs). (more…)

Read More

New Tool Offers Unprecedented Access for Root Studies

Stanford, CA — Plant roots are fascinating plant organs – they not only anchor the plant, but are also the world’s most efficient mining companies. Roots live in darkness and direct the activities of the other organs, as well as interact with the surrounding environment. Charles Darwin posited in The Power of Movement of Plants that the root system acts as a plant’s brain. (more…)

Read More

New Take on Impacts of Low Dose Radiation

*Berkeley Lab Researchers Find Evidence Suggesting Risk May Not Be Proportional to Dose at Low Dose Levels*

Researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab), through a combination of time-lapse live imaging and mathematical modeling of a special line of human breast cells, have found evidence to suggest that for low dose levels of ionizing radiation, cancer risks may not be directly proportional to dose. This contradicts the standard model for predicting biological damage from ionizing radiation – the linear-no-threshold hypothesis or LNT – which holds that risk is directly proportional to dose at all levels of irradiation.

“Our data show that at lower doses of ionizing radiation, DNA repair mechanisms work much better than at higher doses,” says Mina Bissell, a world-renowned breast cancer researcher with Berkeley Lab’s Life Sciences Division. “This non-linear DNA damage response casts doubt on the general assumption that any amount of ionizing radiation is harmful and additive.” (more…)

Read More