Sleep plays an important role in the brain’s ability to consolidate learning when two new potentially competing tasks are learned in the same day, research at the University of Chicago demonstrates.
Other studies have shown that sleep consolidates learning for a new task. The new study, which measured starlings’ ability to recognize new songs, shows that learning a second task can undermine the performance of a previously learned task. But this study is the first to show that a good night’s sleep helps the brain retain both new memories. (more…)
The ancestor of all modern African monkeys was alive 3 million years earlier than previously thought and coexisted with members of a now-extinct branch of the monkey family tree, according to new evidence from anthropologists.
“We pushed back the origin of modern monkeys by a huge chunk of time,” said anthropologist Andrew Hill of Yale University, the senior researcher on the project. “This means there are all sorts of things we can think about. You can start to look at animal interactions that might have taken place.” (more…)
For years, researchers have developed thin films of bismuth telluride (Bi2Te3) – which converts heat into electricity or electricity to cooling – on top of gallium arsenide (GaAs) to create cooling devices for electronics. But while they knew it could be done, it was not clear how – because the atomic structures of those unlikely pair of materials do not appear to be compatible. Now researchers from North Carolina State University and RTI International have solved the mystery, opening the door to new research in the field.
“We’ve used state-of-the-art technology to solve a mystery that has been around for years,” says Dr. James LeBeau, an assistant professor of materials science and engineering at NC State and co-author of a paper on the research. “And now that we know what is going on, we can pursue research to fine-tune the interface of these materials to develop more efficient mechanisms for converting electricity to cooling or heat into electricity. Ultimately, this could have applications in a wide range of electronic devices.” (more…)
PASADENA, Calif. — The Planck space mission has released the most accurate and detailed map ever made of the oldest light in the universe, revealing new information about its age, contents and origins. (more…)
Alone in a wilderness of snow and ice, 600 miles from the Earth’s South Pole, a solitary telescope watches the stars, searching for the origins of the colorful nebulae in which stars are born.
The brilliantly colored, sweeping nebulae featured on magazine covers and posters lining museum exhibits are the birthplaces and cradles of the stars in our galaxy.(more…)
THE WOODLANDS, Texas – NASA’s Mars rover Curiosity has seen evidence of water-bearing minerals in rocks near where it had already found clay minerals inside a drilled rock.
Last week, the rover’s science team announced that analysis of powder from a drilled mudstone rock on Mars indicates past environmental conditions that were favorable for microbial life. Additional findings presented on March 18 at a news briefing at the Lunar and Planetary Science Conference in The Woodlands, Texas, suggest those conditions extended beyond the site of the drilling. (more…)
Berkeley Lab researchers recreate elusive phenomenon with artificial nuclei
The first experimental observation of a quantum mechanical phenomenon that was predicted nearly 70 years ago holds important implications for the future of graphene-based electronic devices. Working with microscopic artificial atomic nuclei fabricated on graphene, a collaboration of researchers led by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have imaged the “atomic collapse” states theorized to occur around super-large atomic nuclei.
“Atomic collapse is one of the holy grails of graphene research, as well as a holy grail of atomic and nuclear physics,” says Michael Crommie, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Physics Department. “While this work represents a very nice confirmation of basic relativistic quantum mechanics predictions made many decades ago, it is also highly relevant for future nanoscale devices where electrical charge is concentrated into very small areas.” (more…)
The Isabella anomaly — indications of a large mass of cool, dehydrated material about 100 kilometers beneath central California — is in fact a surviving slab of the Farallon oceanic plate. Most of the Farallon plate was driven deep into the Earth’s mantle as the Pacific and North American plates began converging about 100 million years ago, eventually coming together to form the San Andreas fault.
PROVIDENCE, R.I. [Brown University] — Large chunks of an ancient tectonic plate that slid under North America millions of years ago are still present under parts of central California and Mexico, according to new research led by Brown University geophysicists. (more…)