Tag Archives: sun

From Cassini for the Holidays: A Splendor Seldom Seen

PASADENA, Calif — Just in time for the holidays, NASA’s Cassini spacecraft, in orbit around Saturn for more than eight years now, has delivered another glorious, backlit view of the planet Saturn and its rings.

On Oct. 17, 2012, during its 174th orbit around the gas giant, Cassini was deliberately positioned within Saturn’s shadow, a perfect location from which to look in the direction of the sun and take a backlit view of the rings and the dark side of the planet. Looking back towards the sun is a geometry referred to by planetary scientists as “high solar phase;” near the center of your target’s shadow is the highest phase possible. This is a very scientifically advantageous and coveted viewing position, as it can reveal details about both the rings and atmosphere that cannot be seen in lower solar phase. (more…)

Read More

Can Life Emerge on Planets Around Cooling Stars?

Astronomers find planets in strange places and wonder if they might support life. One such place would be in orbit around a white or brown dwarf. While neither is a star like the sun, both glow and so could be orbited by planets with the right ingredients for life.

No terrestrial, or Earth-like planets have yet been confirmed orbiting white or brown dwarfs, but there is no reason to assume they don’t exist. However, new research by Rory Barnes of the University of Washington and René Heller of Germany’s Leibniz Institute for Astrophysics Potsdam hints that planets orbiting white or brown dwarfs will prove poor candidates for life. (more…)

Read More

NASA, Texas Astronomers Find First Multi-Planet System Around a Binary Star

FORT DAVIS, Texas — NASA’s Kepler mission has found the first multi-planet solar system orbiting a binary star, characterized in large part by University of Texas at Austin astronomers using two telescopes at the university’s McDonald Observatory in West Texas. The finding, which proves that whole planetary systems can form in a disk around a binary star, is published in today’s issue of the journal Science.

“It’s Tatooine, right?” said McDonald Observatory astronomer Michael Endl. “But this was not shown in Star Wars,” he said, referring to the periodic changes in the amount of daylight falling on a planet with two suns. Measurements of the star’s orbits showed that daylight on the planets would vary by a large margin over the 7.4-Earth-day period as the two stars completed their mutual orbits, each moving closer to, then farther from, the planets (which are themselves moving). (more…)

Read More

Scientists Discover New Trigger for Immense North Atlantic Ocean Spring Plankton Bloom

Ocean eddies help jump-start plankton blooms that spread across hundreds of square miles

On this July 4th week, U.S. beachgoers are thronging their way to seaside resorts and parks to celebrate with holiday fireworks. But across the horizon and miles out to sea toward the north, the Atlantic Ocean’s own spring and summer ritual unfolds. It entails the blooming of countless microscopic plants, or phytoplankton.

In what’s known as the North Atlantic Bloom, an immense number of phytoplankton burst into existence, first “greening,” then “whitening” the sea as one or more species take the place of others.

What turns on this huge bloom, what starts these ocean fireworks? Is it the Sun’s warmth? (more…)

Read More

A Prime Seat to a Once-in-a-Lifetime Spectacle

Hosted by world-renowned astrophotographer Adam Block at the UA’s Mount Lemmon SkyCenter, a group of sky and astronomy enthusiasts watched Venus cross the sun from the highest vantage point in Southern Arizona.

On Nov. 24, 1639, in the tiny village of Much Hoole not far from Liverpool, England, a poor farmer’s son and self-taught astronomer affixed a sheet of paper in front of a makeshift telescope pointed at the sun and waited.

Thirty-five minutes before sunset, a dark, round spot appeared right next to the bright disc that was the sun’s face projected on the paper, and made Jeremiah Horrocks, only 20 years old at the time, the first known human to predict, observe and record a transit – the passage of a planet across the sun as seen from Earth.

Almost 373 years later, a group of sky enthusiasts is gathered beneath the dome of one of the University of Arizona’s observatories on Mount Lemmon just north of Tucson, Ariz. (more…)

Read More

Fossil Raindrop Impressions Imply Greenhouse Gases Loaded Early Atmosphere

In ancient Earth history, the sun burned as much as 30 percent dimmer than it does now. Theoretically that should have encased the planet in ice, but there is geologic evidence for rivers and ocean sediments between 2 billion and 4 billion years ago.

Scientists have speculated that temperatures warm enough to maintain liquid water were the result of a much thicker atmosphere, high concentrations of greenhouse gases or a combination of the two. (more…)

Read More

First Habitable-Zone super-Earth Discovered in Orbit Around a Sun-like Star

Washington, D.C. — NASA’s Kepler Mission has discovered the first super-Earth orbiting in the habitable zone of a star similar to the Sun. A team of researchers, including Carnegie’s Alan Boss, has discovered what could be a large, rocky planet with a surface temperature of about 72 degrees Fahrenheit, comparable to a comfortable spring day on Earth. This landmark finding will be published in The Astrophysical Journal.

The discovery team, led by William Borucki of the NASA Ames Research Center, used photometric data from the NASA Kepler space telescope, which monitors the brightness of 155,000 stars. Earth-size planets whose orbital planes are aligned such that they periodically pass in front of their stars result in tiny dimmings of their host star’s light–dimmings that can only be measured by a highly specialized space telescope like Kepler. (more…)

Read More

UCLA Astronomers Solve Mystery of Vanishing Electrons

*Findings further efforts to better predict geomagnetic storms in space*

UCLA researchers have explained the puzzling disappearing act of energetic electrons in Earth’s outer radiation belt, using data collected from a fleet of orbiting spacecraft.

In a paper published Jan. 29 in the advance online edition of the journal Nature Physics, the team shows that the missing electrons are swept away from the planet by a tide of solar wind particles during periods of heightened solar activity. (more…)

Read More