While African wildlife often run afoul of ranchers and pastoralists securing food and water resources for their animals, the interests of fauna and farmer might finally be unified by the “Sodom apple,” a toxic invasive plant that has overrun vast swaths of East African savanna and pastureland.
Should the ominous reference to the smitten biblical city be unclear, the Sodom apple, or Solanum campylacanthum, is a wicked plant. Not a true apple, this relative of the eggplant smothers native grasses with its thorny stalks, while its striking yellow fruit provides a deadly temptation to sheep and cattle. (more…)
As smartphones get smarter and computers compute faster, researchers actively search for ways to speed up the processing of information. Now, scientists at Princeton University have made a step forward in developing a new class of materials that could be used in future technologies.
They have discovered a new quantum effect that enables electrons — the negative-charge-carrying particles that make today’s electronic devices possible — to dash through the interior of these materials with very little resistance. (more…)
Revenge is a dish best served with a side of change.
A series of experiments conducted by researchers affiliated with Princeton University has found that punishment is only satisfying to victims if the offenders change their attitude as a result of the punishment. (more…)
Along with eggs, soup and rubber toys, the list of the chicken’s most lasting legacies may eventually include advanced materials such as self-organizing colloids, or optics that can transmit light with the efficiency of a crystal and the flexibility of a liquid.
The unusual arrangement of cells in a chicken’s eye constitutes the first known biological occurrence of a potentially new state of matter known as “disordered hyperuniformity,” according to researchers from Princeton University and Washington University in St. Louis. Research in the past decade has shown that disordered hyperuniform materials have unique properties when it comes to transmitting and controlling light waves, the researchers report in the journal Physical Review E. (more…)
The idea of everyone in a community pitching in is so universal that even bacteria have a system to prevent the layabouts of their kind from enjoying the fruit of others’ hard work, Princeton University researchers have discovered.
Groups of the bacteria Vibrio cholerae deny loafers their unjust desserts by keeping the food generated by the community’s productive members away from V. cholerae that attempt to live on others’ leftover nutrients, the researchers report in the journal Current Biology. The researchers found that individual bacteria produce a thick coating around themselves to prevent nutrients from drifting over to the undeserving. Alternatively, the natural flow of fluids over the surface of bacterial communities can wash away excess food before the freeloaders can indulge. (more…)
The coexistence of two opposing phenomena might be the secret to understanding the enduring mystery in physics of how materials heralded as the future of powering our homes and communities actually work, according to Princeton University-led research. Such insight could help spur the further development of high-efficiency electric-power delivery.
Published in the journal Science, the findings provide a substantial clue for unraveling the inner workings of high-temperature superconductors (HTS) based on compounds containing copper and oxygen, or copper oxides. Copper-oxide high-temperature superconductors are prized as a material for making power lines because of their ability to conduct electricity with no resistance. It’s been shown that the material can be used to deliver electrical power like ordinary transmission lines, but with no loss of energy. In addition, typical superconductors need extremely low temperatures of roughly -243 degrees Celsius (-405 degrees Fahrenheit) to exhibit this 100-percent efficiency. A copper oxide HTS, however, can reach this level of efficiency at a comparatively toasty -135 degrees Celsius (-211 degrees Fahrenheit), which is achievable using liquid nitrogen. (more…)
Narrow stripes of dirt and rock beneath massive Antarctic glaciers create friction zones that slow the flow of ice toward the sea, researchers at Princeton University and the British Antarctic Survey have found. Understanding how these high-friction regions form and subside could help researchers understand how the flow of these glaciers responds to a warming climate.
Just as no-slip strips on flooring prevent people from slipping on a wet floor, these ribs or “tiger stripes” — named in reference to Princeton’s tiger mascot — provide friction that hinders the glaciers from slipping along the underlying bed of rock and sediment, the researchers report online in the journal Science. (more…)
A class of molecules called microRNAs may offer cancer patients two ways to combat their disease.
Researchers at Princeton University have found that microRNAs — small bits of genetic material capable of repressing the expression of certain genes — may serve as both therapeutic targets and predictors of metastasis, or a cancer’s spread from its initial site to other parts of the body. The research was published in the journal Cancer Cell. (more…)