Tag Archives: NASA

Satellites See Double Jeopardy for SoCal Fire Season

PASADENA, Calif. – New insights into two factors that are creating a potentially volatile Southern California wildfire season come from an ongoing project using NASA and Indian satellite data by scientists at NASA’s Jet Propulsion Laboratory, Pasadena, Calif.; and Chapman University, Orange, Calif.

The scientists tracked the relationship between rainfall and the growth and drying-out of vegetation in recent months, during an abnormally dry year. They found the timing of rains triggered regional vegetation growth in January and early February, which then dried out faster than normal during a period of low rainfall, strong winds and high temperatures in March and April. The combination likely elevates wildfire risks by increasing available fuel. (more…)

Read More

New analysis suggests wind, not water, formed mound on Mars

A roughly 3.5-mile high Martian mound that scientists suspect preserves evidence of a massive lake might actually have formed as a result of the Red Planet’s famously dusty atmosphere, an analysis of the mound’s features suggests. If correct, the research could dilute expectations that the mound holds evidence of a large body of water, which would have important implications for understanding Mars’ past habitability.

Researchers based at Princeton University and the California Institute of Technology suggest that the mound, known as Mount Sharp, most likely emerged as strong winds carried dust and sand into the 96-mile-wide crater in which the mound sits. They report in the journal Geology that air likely rises out of the massive Gale Crater when the Martian surface warms during the day, then sweeps back down its steep walls at night. Though strong along the Gale Crater walls, these “slope winds” would have died down at the crater’s center where the fine dust in the air settled and accumulated to eventually form Mount Sharp, which is close in size to Alaska’s Mt. McKinley. (more…)

Read More

‘Tis the Season — for Plasma Changes at Saturn

Researchers working with data from NASA’s Cassini spacecraft have discovered one way the bubble of charged particles around Saturn — known as the magnetosphere — changes with the planet’s seasons. The finding provides an important clue for solving a riddle about the planet’s naturally occurring radio signal. The results might also help scientists better understand variations in Earth’s magnetosphere and Van Allen radiation belts, which affect a variety of activities at Earth, ranging from space flight safety to satellite and cell phone communications.

The paper, just published in the Journal of Geophysical Research, is led by Tim Kennelly, an undergraduate physics and astronomy major at the University of Iowa, Iowa City, who is working with Cassini’s radio and plasma wave science team. (more…)

Read More

NASA Probe Gets Close-Up Views of Large Hurricane on Saturn

PASADENA, Calif. – NASA’s Cassini spacecraft has provided scientists the first close-up, visible-light views of a behemoth hurricane swirling around Saturn’s north pole.

In high-resolution pictures and video, scientists see the hurricane’s eye is about 1,250 miles (2,000 kilometers) wide, 20 times larger than the average hurricane eye on Earth. Thin, bright clouds at the outer edge of the hurricane are traveling 330 mph(150 meters per second). The hurricane swirls inside a large, mysterious, six-sided weather pattern known as the hexagon. (more…)

Read More

NASA’s HyspIRI Sees the Forest for the Trees and More

To Robert Green, light contains more than meets the eye: it contains fingerprints of materials that can be detected by sensors that capture the unique set of reflected wavelengths. Scientists have used the technique, called imaging spectroscopy, to learn about water on the moon, minerals on Mars and the composition of exoplanets. Green’s favorite place to apply the technique, however, is right here on the chemically rich Earth, which is just what he and colleagues achieved this spring during NASA’s Hyperspectral Infrared Imager (HyspIRI) airborne campaign.

“We have ideas about what makes up Earth’s ecosystems and how they function,” said Green, of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who is principal investigator of the campaign’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument. “But a comprehensive understanding requires us to directly measure these things and how they change over landscapes and from season to season.” (more…)

Read More

Rocket powered by nuclear fusion could send humans to Mars

Human travel to Mars has long been the unachievable dangling carrot for space programs. Now, astronauts could be a step closer to our nearest planetary neighbor through a unique manipulation of nuclear fusion, the same energy that powers the sun and stars.

University of Washington researchers and scientists at a Redmond-based space-propulsion company are building components of a fusion-powered rocket aimed to clear many of the hurdles that block deep space travel, including long times in transit, exorbitant costs and health risks. (more…)

Read More

Cutting Specific Atmospheric Pollutants Would Slow Sea Level Rise

Decreasing emissions of black carbon, methane and other pollutants makes a difference

With coastal areas bracing for rising sea levels, new research indicates that cutting emissions of certain pollutants can greatly slow sea level rise this century.

Scientists found that reductions in four pollutants that cycle comparatively quickly through the atmosphere could temporarily forestall the rate of sea level rise by roughly 25 to 50 percent.

The researchers focused on emissions of four heat-trapping pollutants: methane, tropospheric ozone, hydrofluorocarbons and black carbon. (more…)

Read More

Supercomputer Helps Planck Mission Expose Ancient Light

Like archeologists carefully digging for fossils, scientists with the Planck mission are sifting through cosmic clutter to find the most ancient light in the universe.

The Planck space telescope has created the most precise sky map ever made of the oldest light known, harking back to the dawn of time. This light, called the cosmic microwave background, has traveled 13.8 billion years to reach us. It is so faint that Planck observes every point on the sky an average of 1,000 times to pick up its glow. (more…)

Read More