Tag Archives: dynamic

China’s Hidden Water Footprint

COLLEGE PARK, Md. – Highly developed but water-scarce regions in China, such as Shanghai, Beijing, and Tianjin, are contributing to water depletion in other water-scarce regions of the country through imports of food, textile, and other water intensive products, according to a new study published in the journal Environmental Science & Technology. For example, purchasing cloth in Shanghai may not consume water directly, but the production of cloth requires cotton, which is water intensive to cultivate – indirectly contributing to the water scarcity in the less-developed cotton production regions. This dynamic also holds true for food and other products. Only 20% of Shanghai’s scarce water footprint, or the amount of scarce water consumed, is from local watersheds while 80% is from water resources of other water-scarce regions, such as Xinjiang, Hebei, and Inner Mongolia. (more…)

Read More

Hurricane research

Team studies new methods to support hurricane evacuation decision-making

Hurricanes are dynamic. Wind speeds change as the storm progresses and rainfall varies widely, creating tremendous uncertainty as the natural elements interact with man and man-made infrastructure.

Roads may close, traffic patterns may change, leading to travel delays that could impact lives and exacerbate public safety.

And yet researchers, policy makers and government officials have long relied on a static model to map hurricanes and chart evacuation zones, particularly when it comes to timing and decision-making.  (more…)

Read More

Evolutionary study shows bridge species drive tropical engine of biodiversity

Although scientists have known since the middle of the 19th century that the tropics are teeming with species while the poles harbor relatively few, the origin of the most dramatic and pervasive biodiversity on Earth has never been clear.

New research sheds light on how that pattern came about. Furthermore, it confirms that the tropics have been and continue to be the Earth’s engine of biodiversity. (more…)

Read More

New analysis suggests wind, not water, formed mound on Mars

A roughly 3.5-mile high Martian mound that scientists suspect preserves evidence of a massive lake might actually have formed as a result of the Red Planet’s famously dusty atmosphere, an analysis of the mound’s features suggests. If correct, the research could dilute expectations that the mound holds evidence of a large body of water, which would have important implications for understanding Mars’ past habitability.

Researchers based at Princeton University and the California Institute of Technology suggest that the mound, known as Mount Sharp, most likely emerged as strong winds carried dust and sand into the 96-mile-wide crater in which the mound sits. They report in the journal Geology that air likely rises out of the massive Gale Crater when the Martian surface warms during the day, then sweeps back down its steep walls at night. Though strong along the Gale Crater walls, these “slope winds” would have died down at the crater’s center where the fine dust in the air settled and accumulated to eventually form Mount Sharp, which is close in size to Alaska’s Mt. McKinley. (more…)

Read More

Subconscious mental categories help brain sort through everyday experiences

Your brain knows it’s time to cook when the stove is on, and the food and pots are out. When you rush away to calm a crying child, though, cooking is over and it’s time to be a parent. Your brain processes and responds to these occurrences as distinct, unrelated events.

But it remains unclear exactly how the brain breaks such experiences into “events,” or the related groups that help us mentally organize the day’s many situations. A dominant concept of event-perception known as prediction error says that our brain draws a line between the end of one event and the start of another when things take an unexpected turn (such as a suddenly distraught child). (more…)

Read More

Search for Life Suggests Solar Systems More Habitable than Ours

SAN FRANCISCO — Scattered around the Milky Way are stars that resemble our own sun—but a new study is finding that any planets orbiting those stars may very well be hotter and more dynamic than Earth.

That’s because the interiors of any terrestrial planets in these systems are likely warmer than Earth—up to 25 percent warmer, which would make them more geologically active and more likely to retain enough liquid water to support life, at least in its microbial form.

The preliminary finding comes from geologists and astronomers at Ohio State University who have teamed up to search for alien life in a new way. (more…)

Read More

Training Your Robot the PaR-PaR Way

Berkeley Lab and JBEI Researchers Develop a Biology-Friendly Robot Programming Language

Teaching a robot a new trick is a challenge. You can’t reward it with treats and it doesn’t respond to approval or disappointment in your voice. For researchers in the biological sciences, however, the future training of robots has been made much easier thanks to a new program called “PaR-PaR.”

Nathan Hillson, a biochemist at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), led the development of PaR-PaR, which stands for Programming a Robot. PaR-PaR is a simple high-level, biology-friendly, robot-programming language that allows researchers to make better use of liquid-handling robots and thereby make possible experiments that otherwise might not have been considered. (more…)

Read More

Spacecraft Observes Evolution of Conditions at Edge of Solar System

WASHINGTON — Conditions at the edge of our solar system may be much more dynamic than previously thought, new observations suggest. Future exploration missions are expected to benefit in design and mission objectives from a better understanding of the changing conditions in this boundary region. (more…)

Read More