Tag Archives: experimental data

Reconcilable Differences: Study Uncovers the Common Ground of Scientific Opposites

Searching for common elements in seemingly incompatible scientific theories may lead to the discovery of new ones that revolutionize our understanding of the world.

Such is the idea behind a mathematical framework Princeton University researchers developed that strips away the differences between scientific laws and theories to reveal how the ideas are compatible. In a recent report in the journal Physical Review Letters, the authors explain how the mathematical model finds common ground between the famously at-odds physics equations that govern classical and quantum mechanics. (more…)

Read More

Training Your Robot the PaR-PaR Way

Berkeley Lab and JBEI Researchers Develop a Biology-Friendly Robot Programming Language

Teaching a robot a new trick is a challenge. You can’t reward it with treats and it doesn’t respond to approval or disappointment in your voice. For researchers in the biological sciences, however, the future training of robots has been made much easier thanks to a new program called “PaR-PaR.”

Nathan Hillson, a biochemist at the U.S. Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI), led the development of PaR-PaR, which stands for Programming a Robot. PaR-PaR is a simple high-level, biology-friendly, robot-programming language that allows researchers to make better use of liquid-handling robots and thereby make possible experiments that otherwise might not have been considered. (more…)

Read More

How the Brain Makes Memories: Rhythmically!

The brain learns through changes in the strength of its synapses — the connections between neurons — in response to stimuli.

Now, in a discovery that challenges conventional wisdom on the brain mechanisms of learning, UCLA neuro-physicists have found there is an optimal brain “rhythm,” or frequency, for changing synaptic strength. And further, like stations on a radio dial, each synapse is tuned to a different optimal frequency for learning.

The findings, which provide a grand-unified theory of the mechanisms that underlie learning in the brain, may lead to possible new therapies for treating learning disabilities. (more…)

Read More