The internal circadian clock of a Drosophila (fruit fly) can be synchronised using vibrations, according to research published today in the journal Science. The study suggests that an animal’s own movements can influence its clock.
The circadian clock, which underlies the daily rhythms characterising most of our bodily functions, including the sleep cycle, is mainly set by diurnal changes in light and temperature. (more…)
Researchers at Michigan State University have discovered a protein that does its best work with one foot in the grave.
The study, which appears in the current issue of the Journal of Biological Chemistry, focuses on the nontraditional lifestyle of Retinoblastoma tumor suppressor proteins, which could lead to new ways to treat cancer.
“Retinoblastoma proteins are unique in that they use controlled destruction to do their jobs in a timely but restrained fashion,” said Liang Zhang, a lead author and MSU cell and molecular biology graduate student. “This is an unusual way for proteins to act.” (more…)
UCLA stem cell researchers have shown that insulin and nutrition prevent blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.
Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as blood stem cells are needed to create the blood supply for the adult fruit fly.(more…)
Baltimore, MD — The human genome shares several peculiarities with the DNA of just about every other plant and animal. Our genetic blueprint contains numerous entities known as transposons, or “jumping genes,” which have the ability to move from place to place on the chromosomes within a cell.
An astounding 50% of human DNA comprises both active transposon elements and the decaying remains of former transposons that were active thousands to millions of years ago before becoming damaged and immobile. If all of this mobile and formerly mobile DNA were not mysterious enough, every time a plant, animal or human cell prepares to divide, the chromosome regions richest in transposon-derived sequences, even elements long deceased, are among the last to duplicate. The reason for their delayed duplication, if there is one, has eluded biologists for more than 50 years. (more…)