Astronomers across the globe can now sift through hundreds of millions of galaxies, stars and asteroids collected in the first bundle of data from NASA’s Wide-field Infrared Survey Explorer (WISE) mission.
“Starting today thousands of new eyes will be looking at WISE data, and I expect many surprises,” said Edward (Ned) Wright of UCLA, the mission’s principal investigator. (more…)
*Collaboration reveals results from 100-day experiment*
Today, scientists from the XENON collaboration announced the result from their search for the elusive component of our universe known as dark matter. After analyzing one hundred days of data taken with the XENON100 experiment, they see no evidence for the existence of Weakly Interacting Massive Particles (WIMPs), the leading candidates for the mysterious dark matter. The XENON100 experiment is operated deep underground at the Gran Sasso National Laboratory of the Italian National Institute for Physics (INFN). (more…)
EAST LANSING, Mich. — Just as monarch butterflies depend on circadian cues to begin their annual migration, so do plants to survive freezing temperatures.
All living things – humans, animals, plants, microbes – are influenced by circadian rhythms, which are physical, mental and behavioral changes that follow a 24-hour cycle. In the current issue of the Proceedings of the National Academy of Sciences, Michael Thomashow, University Distinguished Professor of molecular genetics, along with MSU colleagues Malia Dong and Eva Farré, has identified that the circadian clock provides key input required for plants to attain maximum freezing tolerance. (more…)
*MU vice chancellor led committee that focused on fundamental physics research projects*
COLUMBIA, Mo. — During the past 60 years, humans have built rockets, walked on the moon and explored the outer reaches of space with probes and telescopes. During these trips in space, research has been conducted to learn more about life and space. Recently, a group of prominent researchers from across the country published a report through the National Academy of Sciences that is intended as a guide as NASA plans the next 10 years of research in space. Rob Duncan, the University of Missouri Vice Chancellor for Research, led the team that developed a blueprint for fundamental physics research in space for the next 10 years. (more…)
A new study finds that the general public thinks getting a suntan poses a greater public health risk than nanotechnology or other nanoparticle applications. The study, from North Carolina State University, compared survey respondents’ perceived risk of nanoparticles with 23 other public-health risks.
The study is the first to compare the public’s perception of the risks associated with nanoparticles to other environmental and health safety risks. Researchers found that nanoparticles are perceived as being a relatively low risk. (more…)
Washington, D.C. — Although its name may make many people think of flowers, the element germanium is part of a frequently studied group of elements, called IVa, which could have applications for next-generation computer architecture as well as implications for fundamental condensed matter physics.
New research conducted by Xiao-Jia Chen, Viktor Struzhkin, and Ho-kwang (Dave) Mao from Geophysical Laboratory at Carnegie Institution for Science, along with collaborators from China, reveals details of the element’s transitions under pressure. Their results show extraordinary agreement with the predictions of modern condensed matter theory. (more…)
Male monkeys looking for a good time might benefit from spending a bit longer getting to know a potential mate, according to a new study published online in the scientific journal Proceedings of the Royal Society B.
The time males spend around a prospective mate might be the key to detecting subtle sexual signals that show which females are fertile and which are not, according to the study, co-authored by an international team of biologists and psychologists. (more…)
A pixel is worth a thousand words? Not exactly how the saying goes, but in this case, it holds true: scientists at Berkeley Lab’s Molecular Foundry have pioneered a new chemical mapping method that provides unprecedented insight into materials at the nanoscale. Moving beyond traditional static imaging techniques, which provide a snapshot in time, these new maps will guide researchers in deciphering molecular chemistry and interactions at the nanoscale—critical for artificial photosynthesis, biofuels production and light-harvesting applications such as solar cells.
“This new technique allows us to capture very high-resolution images of nanomaterials with a huge amount of physical and chemical information at each pixel,” says Alexander Weber-Bargioni, a postdoctoral scholar in the Imaging and Manipulation of Nanostructures Facility at the Foundry. “Usually when you take an image, you just get a picture of what this material looks like, but nothing more. With our method, we can now gain information about the functionality of a nanostructure with rich detail.” (more…)